Abstract

We present a fiber optic laser pulse transmission line for nonintrusive longitudinal profile measurement of the hydrogen ion (H) beam at the front-end of the Spallation Neutron Source accelerator. The 80.5 MHz, 2.5 ps, multikilowatt optical pulses are delivered to the accelerator beam line through a large-mode-area polarization-maintaining optical fiber to ensure high measurement stability. The transmission efficiency, output laser beam quality, pulse jitter, and pulse width broadening over a 30 m long fiber line are experimentally investigated. A successful measurement of the H beam microbunch (130ps) profile is obtained. The experiment is the first demonstration to our knowledge of particle beam profile diagnostics using a fiber optic laser pulse transmission line.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Assadi, “SNS transverse and longitudinal laser profile monitors design, implementation, and results,” in EPAC 2006 Proceedings (European Physical Society Accelerator Group, 2006), pp. 3161–3163.
  2. Y. Liu, C. Long, C. Peters, and A. Aleksandrov, “Measurement of ion beam profiles in a superconducting linac with a laser wire,” Appl. Opt. 49, 6816–6823 (2010).
    [CrossRef]
  3. Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
    [CrossRef]
  4. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
    [CrossRef]
  5. J. C. Jasapara, A. DeSantolo, J. W. Nicholson, A. D. Yablon, and Z. Varallyay, “Diffraction limited amplification of picosecond pulses in 1170  μm2 effective area erbium fiber,” Opt. Express 16, 18869–18874 (2008).
    [CrossRef]
  6. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
    [CrossRef]
  7. J. Zhang, V. Fromzel, and M. Dubinskii, “Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency,” Opt. Express 19, 5574–5578 (2011).
    [CrossRef]
  8. J. A. Armstrong, “Measurement of picoseconds laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chaps. 5 and 11.
  10. The software used in the numerical calculation is from http://www.optics.rochester.edu/workgroups/agrawal/grouphomepage.php?pageid=software .
  11. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [CrossRef]
  12. Y. Kang, “Calculations and measurements of Raman gain coefficients of different fiber types,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2002), pp. 19–22.
  13. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
    [CrossRef]
  14. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [CrossRef]

2012

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

2011

2010

2008

2007

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, “Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber,” Opt. Lett. 32, 2429–2431 (2007).
[CrossRef]

2002

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[CrossRef]

1986

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

1984

1967

J. A. Armstrong, “Measurement of picoseconds laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chaps. 5 and 11.

Aleksandrov, A.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Y. Liu, C. Long, C. Peters, and A. Aleksandrov, “Measurement of ion beam profiles in a superconducting linac with a laser wire,” Appl. Opt. 49, 6816–6823 (2010).
[CrossRef]

Andrejco, M. J.

Armstrong, J. A.

J. A. Armstrong, “Measurement of picoseconds laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

Assadi, S.

S. Assadi, “SNS transverse and longitudinal laser profile monitors design, implementation, and results,” in EPAC 2006 Proceedings (European Physical Society Accelerator Group, 2006), pp. 3161–3163.

Codemard, C. A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

DeSantolo, A.

DiGiovanni, D.

Dubinskii, M.

Fleming, J. W.

Fromzel, V.

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Headley, C.

Hickey, L.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Jasapara, J. C.

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Kang, Y.

Y. Kang, “Calculations and measurements of Raman gain coefficients of different fiber types,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2002), pp. 19–22.

Liu, Y.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Y. Liu, C. Long, C. Peters, and A. Aleksandrov, “Measurement of ion beam profiles in a superconducting linac with a laser wire,” Appl. Opt. 49, 6816–6823 (2010).
[CrossRef]

Long, C.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Y. Liu, C. Long, C. Peters, and A. Aleksandrov, “Measurement of ion beam profiles in a superconducting linac with a laser wire,” Appl. Opt. 49, 6816–6823 (2010).
[CrossRef]

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Menshov, A.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Nakajima, K.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Ohashi, M.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[CrossRef]

Payne, D. N.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Peters, C.

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Pogge, J.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Varallyay, Z.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Webster, A.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Yablon, A. D.

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

Zhang, J.

Zhukov, A.

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. B

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[CrossRef]

Appl. Phys. Lett.

J. A. Armstrong, “Measurement of picoseconds laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron. 13, 573–579 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14, 492–494 (2002).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

Y. Liu, A. Aleksandrov, C. Long, A. Menshov, J. Pogge, A. Webster, and A. Zhukov, “Nonintrusive emittance measurement of 1 GeV H− beam,” Nucl. Instrum. Methods Phys. Res. A 675, 97–102 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Assadi, “SNS transverse and longitudinal laser profile monitors design, implementation, and results,” in EPAC 2006 Proceedings (European Physical Society Accelerator Group, 2006), pp. 3161–3163.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995), Chaps. 5 and 11.

The software used in the numerical calculation is from http://www.optics.rochester.edu/workgroups/agrawal/grouphomepage.php?pageid=software .

Y. Kang, “Calculations and measurements of Raman gain coefficients of different fiber types,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2002), pp. 19–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic drawing of fiber transmission experiment. Inset box A, launching setup for angle polished fiber end. Inset box B, autocorrelation measurement setup. BS, beam splitter; PBS, polarization beam splitter; BBO, crystal; HWP, half-wave plate; Pol, polarizer; L, lens; M, mirror; PD, photodetector; θ0, external beam incidence angle; θin, internal incidence angle.

Fig. 2.
Fig. 2.

Beam spot size variation as a function of the working distance with the launching lens focal length f=50mm and fiber collimation lens f=35mm. Filled triangle, horizontal; open circle, vertical. Insets are near-field and far-field beam profiles. The length of fiber is 30 m.

Fig. 3.
Fig. 3.

(a) Autocorrelation plots at different fiber output power levels and (b) FWHM pulse width as a function of fiber output power. Filled circle, measurement; open diamond, theoretical values. The length of fiber is 30 m.

Fig. 4.
Fig. 4.

Schematic of MEBT laser-based longitudinal profile measurement. MCP, microchannel plate; SR570, low-noise current preamplifier.

Fig. 5.
Fig. 5.

Measurement setup installed near the SNS MEBT beam line. Inset A, photo of the measurement box.

Fig. 6.
Fig. 6.

Measurement result of the H longitudinal beam profile with 1 kHz frequency offset. The pulse spacing (200μs) corresponds to the period (2.5ns) of the H beam microbunch.

Metrics