Abstract

For the first time [to our best knowledge] a high-index-contrast z-cut Er:LiNbO3 photonic wire waveguide laser, optically pumped at 980 nm wavelength, is designed for continuous-wave operation. Waveguide modes and laser characteristics are numerically computed using a developed full vectorial finite-element method based tool. In order to maximize the output power of the laser, the active cavity length and output mirror’s reflectivity have been optimized, considering different pump power and waveguide background losses. Efficient laser emission is theoretically predicted at 1531 nm wavelength for the fundamental TE mode and a value of threshold pump power as low as 0.2 mW has been computed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Bosso, “Applications of lithium niobate integrated optic in telecommunication systems,” Proc. SPIE 3620, 34–37 (1999).
    [CrossRef]
  2. M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.
  3. I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
    [CrossRef]
  4. R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
    [CrossRef]
  5. P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
    [CrossRef]
  6. C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
    [CrossRef]
  7. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
    [CrossRef]
  8. J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
    [CrossRef]
  9. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
    [CrossRef]
  10. D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
    [CrossRef]
  11. C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997).
    [CrossRef]
  12. W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
    [CrossRef]
  13. S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
    [CrossRef]
  14. K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979).
    [CrossRef]
  15. D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
    [CrossRef]
  16. J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
    [CrossRef]
  17. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [CrossRef]
  18. M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
    [CrossRef]
  19. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
    [CrossRef]
  20. H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.
  21. D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
    [CrossRef]
  22. GiD http://gid.cimne.upc.es/ .
  23. A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microwave Theory Tech. 25, 353–360 (1977).
    [CrossRef]
  24. J. Jin, The Finite Element Method in Electro-magnetics2nd ed. (Wiley, 2002).
  25. http://www.roditi.com/Optical/Erbium_Lithium.html .
  26. C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
    [CrossRef]

2011 (1)

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

2010 (1)

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

2009 (1)

2007 (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

2005 (1)

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

2000 (1)

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

1999 (1)

S. S. Bosso, “Applications of lithium niobate integrated optic in telecommunication systems,” Proc. SPIE 3620, 34–37 (1999).
[CrossRef]

1997 (2)

C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997).
[CrossRef]

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

1996 (4)

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
[CrossRef]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

1994 (1)

C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
[CrossRef]

1993 (1)

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

1992 (2)

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

1991 (1)

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

1979 (1)

K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

1977 (1)

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microwave Theory Tech. 25, 353–360 (1977).
[CrossRef]

Amin, J.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
[CrossRef]

Aust, J. A.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
[CrossRef]

Baumann, I.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

Becker, P.

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

Beltram, F.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Bendig, H.

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

Bianconi, M.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Bosso, S. S.

S. S. Bosso, “Applications of lithium niobate integrated optic in telecommunication systems,” Proc. SPIE 3620, 34–37 (1999).
[CrossRef]

Brinkmann, R.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Caughan, L. M.

C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997).
[CrossRef]

C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
[CrossRef]

Cecchini, M.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Chang, S.

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

Chen, C.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Chen, X.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Cingolani, R.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Cui, Y.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Das, B. K.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

De Nicola, P.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Dey, D.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

Di Pasquale, F.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Digonnet, M. J. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Dinand, M.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

Ding, G.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Feigelson, R. S.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Fejer, M. M.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Gary, J. M.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

Gather, B.

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

Gill, D. M.

C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
[CrossRef]

Girardo, S.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Gunter, P.

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.

Huang, C.-H.

C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997).
[CrossRef]

C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
[CrossRef]

Jin, J.

J. Jin, The Finite Element Method in Electro-magnetics2nd ed. (Wiley, 2002).

Kip, D.

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

Koechlin, M.

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

Konrad, A.

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microwave Theory Tech. 25, 353–360 (1977).
[CrossRef]

Krätzig, E.

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

Kubodera, K.

K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

Li, J.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Liu, J.

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

Marshall, A. F.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Masini, L.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Montanari, G. B.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Otsuka, K.

K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

Pintus, P.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Pisignano, D.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Poberaj, G.

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Prati, G.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Reza, S.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Ricken, R.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[CrossRef]

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

Sanford, N. A.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
[CrossRef]

Sanzari, I.

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

Sher, S. M.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Sitar, Z.

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

Sohler, W.

H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17, 24261–24268 (2009).
[CrossRef]

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.

Suche, H.

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

Sugliani, S.

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

Sulser, F.

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

Veasey, D. L.

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

Wang, W.

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

Wang, Y.

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

Westenhofer, S.

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

Young, W. M.

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

Zhang, D.

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61, 1257–1259 (1992).
[CrossRef]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785–3787 (1996).
[CrossRef]

Electron. Lett. (2)

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415–416 (1991).
[CrossRef]

C.-H. Huang and L. M. Caughan, “Photorefractive-damage-resistant Er-indiffused MgO:LiNbO ZnO-waveguide amplifiers and lasers,” Electron. Lett. 33, 1639–1640 (1997).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. M. Sher, P. Pintus, F. Di Pasquale, M. Bianconi, G. B. Montanari, P. De Nicola, S. Sugliani, and G. Prati, “Design of 980 nm-pumped waveguide laser for continuous wave operation in ion implanted Er:LiNbO3,” IEEE J. Quantum Electron. 47, 526–533 (2011).
[CrossRef]

D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO waveguide laser,” IEEE J. Quantum Electron. 32, 1833–1838 (1996).
[CrossRef]

I. Baumann, R. Brinkmann, M. Dinand, W. Sohler, and S. Westenhofer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron. 32, 1695–1706 (1996).
[CrossRef]

D. L. Veasey, J. M. Gary, J. Amin, and J. A. Aust, “Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron. 33, 1647–1662 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-H. Huang and L. M. Caughan, “980 nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484 nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367–372 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Liu, Y. Wang, S. Chang, and W. Wang, “Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure,” IEEE Photon. Technol. Lett. 12, 1204–1206 (2000).
[CrossRef]

M. Koechlin, F. Sulser, Z. Sitar, G. Poberaj, and P. Gunter, “Free-standing lithium niobate microring resonators for hybrid integrated optics,” IEEE Photon. Technol. Lett. 22, 251–253 (2010).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. Konrad, “High-order triangular finite elements for electromagnetic waves in anisotropic media,” IEEE Trans. Microwave Theory Tech. 25, 353–360 (1977).
[CrossRef]

IEICE Trans. Electron. (1)

W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguide lasers,” IEICE Trans. Electron. E88-C, 990–997 (2005).
[CrossRef]

J. Appl. Phys. (1)

K. Kubodera and K. Otsuka, “Single-transverse-mode LiNdP4O12 slab waveguide laser, J. Appl. Phys. 50, 653–659 (1979).
[CrossRef]

J. Lightwave Technol. (3)

W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modelling of high-damage resistance Zn-diffused waveguides in congruent and MgOL lithium niobate,” J. Lightwave Technol. 10, 1238–1246 (1992).
[CrossRef]

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5, 700–708 (1987).
[CrossRef]

C.-H. Huang, L. M. Caughan, and D. M. Gill, “Evaluation of absorption and emission cross sections of Er-doped LiNbO3 for application to integrated optic amplifiers,” J. Lightwave Technol. 12, 803–809 (1994).
[CrossRef]

Nat. Photonics (1)

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Gunter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Opt. Express (1)

Phys. Status Solidi (1)

D. Kip, B. Gather, H. Bendig, and E. Krätzig, “Concentration and refractive index profiles of titanium- and iron-diffused planar LiNbO3 waveguides,” Phys. Status Solidi 139, 241–248 (1993).
[CrossRef]

Proc. SPIE (1)

S. S. Bosso, “Applications of lithium niobate integrated optic in telecommunication systems,” Proc. SPIE 3620, 34–37 (1999).
[CrossRef]

Other (5)

M. Cecchini, F. Beltram, R. Cingolani, S. Girardo, L. Masini, D. Pisignano, and I. Sanzari, “Surface-acoustic-wave driven lab-on-chip technologies,” NEST Scientific Report 2007–2009 (University of Dayton, 2009), pp. 71–74.

H. Hu, R. Ricken, and W. Sohler, “High refractive index contrast ridge waveguides in LiNbO3 thin film,” in Proceedings of the European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO-EQEC), Vol. 1 (2009), pp. 14–19.

J. Jin, The Finite Element Method in Electro-magnetics2nd ed. (Wiley, 2002).

http://www.roditi.com/Optical/Erbium_Lithium.html .

GiD http://gid.cimne.upc.es/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of an z-cut y-propagating high-index-contrast Er:LiNbO3 photonic wire laser.

Fig. 2.
Fig. 2.

Transversal cross section of the waveguide is discretized into 2146 second-order finite element triangular mesh, 508 of which are active (i.e., they reside in the Er:LiNbO3 region).

Fig. 3.
Fig. 3.

Normalized intensity profiles (W/μm2) for the QTE modes at pump (top) and signal (bottom) wavelengths computed by our full vectorial FEM code. Mode effective indices (neff) and power confinements (Pcore/Pall) are also presented at corresponding wavelengths.

Fig. 4.
Fig. 4.

Schematic energy level diagram of Er3+ ions in LiNbO3 showing different transition rates involved in the calculation. Upper levels are shown with dotted lines to explain the ESA and cooperative upconversion (CUP) mechanism only. In the simulations, the upconversion from I13/24 and ESA from I11/24 have been considered, while those from the upper levels have not been included in the rate equation formulations.

Fig. 5.
Fig. 5.

Absorption (top) and emission (bottom) cross sections of Er:LiNbO3 for TE and TM polarizations reproduced after [6] by numerical fitting with 1 nm resolution from 1462 to 1626 nm wavelengths, i.e., M=165.

Fig. 6.
Fig. 6.

Constant contour plot of computed laser output power as a function of cavity length (L) and output mirror’s reflectivity (R2) for the pump power of 1 and 10 mW (first and second row, respectively) with the background losses of 2dB/cm, 1dB/cm, and 0.3dB/cm (first, second, and third column, respectively).

Fig. 7.
Fig. 7.

Laser output power as a function of pump power for optimum laser cavity considering the background losses of 2dB/cm, 1dB/cm, and 0.3dB/cm (first, second, and third column, respectively). The zoomed sections in the second row clearly identify the threshold pump powers.

Fig. 8.
Fig. 8.

Relative population of Er ions in the I15/24 ground state (N1), in the I13/24 metastable level (N2) and in the I11/24 excited level (N3). We assumed a background loss of 1.0dB/cm, a cavity length of 98 mm and R2=5%.

Tables (3)

Tables Icon

Table 1. State-of-the-Art of Er:LiNbO3 Laser

Tables Icon

Table 2. Material Refractive Indices

Tables Icon

Table 3. Input Parameter for Er:LiNbO3 Laser Model

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

n1t=(W12+R13)n1+(W21+1τ21)n2+R31n3+CUPn22,
n2t=W12n1(W21+1τ21)n2+1τ32n32CUPn22,
n3t=R13n1(R31+1τ32)n3+CUPn22,
NEr=n1+n2+n3,
Wij=k=1Mσijs(νk)hνk[IASE+(x,y,z;νk)+IASE(x,y,z;νk)],
Rij=σijp(νp)Ip(x,y,z;νp)hνp,
dPp(y;νp)dy=Pp(y;νp)A[σ31p(νp)n3(x,y,z)σ13p(νp)n1(x,y,z)σESAp(νp)n3(x,y,z)]·ψp(x,z)dAlpPp(y;νp),
dPASE±(y;νk)dy=±PASE±(y;νk)A[σ21s(νk)n2(x,y,z)σ12s(νk)n1(x,y,z)]·ψs(x,z)dA±mhvkΔvkAσ21s(νk)n2(x,y,z)ψs(x,z)dAlsPASE±(y;vk),
PASE(L,νs)=R2PASE+(L;νs),
PASE+(0,νs)=R1PASE(0;νs),
Pout(νs)=(1R2)·PASE+(L;νs).
Ni=Areani(x,y,z=L)dxdyArea,i=1,2,3,
Δν=c2nL,

Metrics