Abstract

During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
    [CrossRef]
  2. D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
    [CrossRef]
  3. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
    [CrossRef]
  4. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
    [CrossRef]
  5. J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
    [CrossRef]
  6. B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
    [CrossRef]
  7. E. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [CrossRef]
  8. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  9. D. L. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006).
    [CrossRef]
  10. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [CrossRef]
  11. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600 (2007).
    [CrossRef]
  12. J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
    [CrossRef]
  13. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [CrossRef]
  14. J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).
  15. D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
    [CrossRef]
  16. A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
    [CrossRef]
  17. C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

2011

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

2010

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

2009

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

2008

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[CrossRef]

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

2007

2006

2005

2004

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

1999

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

1996

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

1973

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

1962

Arakawa, E. T.

Besser, M. F.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Bingham, P. R.

Boatner, L. A.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Boccaccini, A. R.

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

Charrière, F.

Coillot, D.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Colomb, T.

Cuche, E.

De Nicola, S.

Depeursinge, C.

Emery, Y.

Farahi, R. H.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Ferraro, P.

Ferrell, T. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Finizio, A.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Gleeson, B.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Grilli, S.

Hamann, B.

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

Heheman, R. F.

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Keppens, V.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Kim, M. K.

Kim, S.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Kühn, J.

Laporta, P.

Ledbetter, H.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Leith, E.

Lereu, A. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Li, J.

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

Liu, J.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Lyons, J. S.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Mann, C. J.

Marquet, P.

McGuire, M.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Méar, F. O.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Miccio, L.

Montagne, L.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Montfort, F.

Osellame, R.

Ott, R. T.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Pan, B.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Paquit, V. C.

Parshall, D. L.

Passian, A.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Paturzo, M.

Podor, R.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Porter, W. D.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Smialek, J. L.

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Sordelet, D. J.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Sutton, M. A.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Teklu, A.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Thundat, T.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Tobin, K. W.

Upatnieks, J.

van Hulst, N. F.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Wang, Z.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Wayman, C. M.

C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

Wig, A.

Wu, D.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Xia, Y.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Zimmerman, B.J.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Acta Mater.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Acta Opt. Sin.

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

Appl. Opt.

Exp. Mech.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

J. Electron Microsc.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

J. Mater. Sci.

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol. A

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Meas. Sci. Technol.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Metall. Mater. Trans. A

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Metall. Trans.

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Opt. Express

Opt. Lett.

Other

C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Supplementary Material (2)

» Media 1: MOV (3100 KB)     
» Media 2: MOV (3242 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Bright-field images of Ni-56.7 Al-37.6 Pt-5.6 alloy (a) before martensitic transformation, (b) and (c) after annealing at 100°C and martensitic transformation.

Fig. 2.
Fig. 2.

Configuration for the reflection multiple wavelength digital holographic microscope. A fiber-coupled laser diode produces the coherent light (λ1=675nm and λ2=635nm, both operating at 0.14 mW), which is divided by a 50/50 1×2 fiber coupler. DH setup: (a) overview A—675 nm diode laser, B—635 nm diode laser, C—heat stage, D—CCD camera; and (b) close-up of the heat stage.

Fig. 3.
Fig. 3.

Multiple wavelength digital holographic microscope setup. L1, 635 nm laser; L2, 675 nm laser; RB, reference beam; OB, object beam; BS, beam splitter; Atten., attenuator; Coll., collimator.

Fig. 4.
Fig. 4.

Captured image: (a) hologram recorded by the CCD camera and (b) Fourier transform of the hologram. The transform results in twin images, one real term (R.T.) and one virtual term (V.T.), for each of the 675 and 635 nm lasers. The real terms are circled to indicate that they were used during image processing.

Fig. 5.
Fig. 5.

3D images of the NiAlPt alloy during heating up to 100°C and cooling down to room temperature, (a) before cycling, T=24°C, flat specimen. The white line indicates the cross section shown in Fig. 6, (b) sudden deformation of the specimen surface, T=55°C, (c) complete transformation from martensite to austenite, marked striation at the specimen surface, T=69°C, and (d) Cooling down to room temperature, deformation still apparent but less pronounced, T=38°C.

Fig. 6.
Fig. 6.

2D plot profiles from the 3D images in Fig. 5 with y=0, (a) plot of surface profile at four temperatures during the heating cycle and (b) tilt corrected surface profile for T=69°C.

Fig. 7.
Fig. 7.

Single crystal FeCrNi coupon, (a) 3D image and (c) 2D cross section profile of 3D image with x=0 before heating at T=24°C, and (b) 3D image and (d) 2D cross section profile of 3D image with x=0 during heating after martensitic transformation at T=552°C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ12=λ1λ2|λ2λ1|.
E(x,y,z)=J1{filter[J{U(x0,y0,0)}]exp[iz2π(1λ)2(fx)2(fy)2]},

Metrics