Abstract

During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
    [CrossRef]
  2. D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
    [CrossRef]
  3. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
    [CrossRef]
  4. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
    [CrossRef]
  5. J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
    [CrossRef]
  6. B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
    [CrossRef]
  7. E. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [CrossRef]
  8. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  9. D. L. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006).
    [CrossRef]
  10. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [CrossRef]
  11. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600 (2007).
    [CrossRef]
  12. J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
    [CrossRef]
  13. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
    [CrossRef]
  14. J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).
  15. D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
    [CrossRef]
  16. A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
    [CrossRef]
  17. C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

2011 (1)

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

2010 (1)

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

2009 (1)

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

2008 (2)

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

2004 (1)

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

1999 (1)

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

1996 (1)

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

1973 (1)

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

1962 (1)

Arakawa, E. T.

Besser, M. F.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Bingham, P. R.

Boatner, L. A.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Boccaccini, A. R.

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

Charrière, F.

Coillot, D.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Colomb, T.

Cuche, E.

De Nicola, S.

Depeursinge, C.

Emery, Y.

Farahi, R. H.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Ferraro, P.

Ferrell, T. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Finizio, A.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Gleeson, B.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Grilli, S.

Hamann, B.

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

Heheman, R. F.

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Keppens, V.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Kim, M. K.

Kim, S.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Kühn, J.

Laporta, P.

Ledbetter, H.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Leith, E.

Lereu, A. L.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Li, J.

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

Liu, J.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Lyons, J. S.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Mann, C. J.

Marquet, P.

McGuire, M.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Méar, F. O.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Miccio, L.

Montagne, L.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Montfort, F.

Osellame, R.

Ott, R. T.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Pan, B.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Paquit, V. C.

Parshall, D. L.

Passian, A.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Paturzo, M.

Podor, R.

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

Porter, W. D.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Smialek, J. L.

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Sordelet, D. J.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Sutton, M. A.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Teklu, A.

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Thundat, T.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005).
[CrossRef]

Tobin, K. W.

Upatnieks, J.

van Hulst, N. F.

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Wang, Z.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Wayman, C. M.

C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

Wig, A.

Wu, D.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Xia, Y.

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Zimmerman, B.J.

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Acta Mater. (1)

D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007).
[CrossRef]

Acta Opt. Sin. (1)

J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009).
[CrossRef]

Appl. Opt. (1)

Exp. Mech. (1)

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

J. Electron Microsc. (1)

D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010).
[CrossRef]

J. Mater. Sci. (1)

A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011).
[CrossRef]

Metall. Mater. Trans. A (1)

A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004).
[CrossRef]

Metall. Trans. (1)

J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).

Opt. Express (3)

Opt. Lett. (1)

Other (2)

C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Supplementary Material (2)

» Media 1: MOV (3100 KB)     
» Media 2: MOV (3242 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics