Abstract

Both multiview and light-field reconstructions are proposed for a multiple-projector 3D display system. To compare the performance of the reconstruction algorithms in the same system, an optimized multiview reconstruction algorithm with sub-view-zones (SVZs) is proposed. The algorithm divided the conventional view zones in multiview display into several SVZs and allocates more view images. The optimized reconstruction algorithm unifies the conventional multiview reconstruction and light-field reconstruction algorithms, which can indicate the difference in performance when multiview reconstruction is changed to light-field reconstruction. A prototype consisting of 60 projectors with an arc diffuser as its screen is constructed to verify the algorithms. Comparison of different configurations of SVZs shows that light-field reconstruction provides large-scale 3D images with the smoothest motion parallax; thus it may provide better overall performance for large-scale 360° display than multiview reconstruction.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
    [CrossRef]
  2. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  3. J.-C. Liou and F.-H. Chen, “Design and fabrication of optical system for time-multiplex autostereoscopic display,” Opt. Express 19, 11007–11017 (2011).
    [CrossRef]
  4. S. Li, H. Li, Z. Zheng, Y. Peng, S. Wang, and X. Liu, “Full-parallax three-dimensional display using new directional diffuser,” Chin. Opt. Lett. 9, 081202 (2011).
  5. L. Qi, Q. Wang, J. Luo, A. Wang, and D. Liang, “Autostereoscopic 3D projection display based on two lenticular sheets,” Chin. Opt. Lett. 10, 011101 (2012).
    [CrossRef]
  6. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multiview display,” Opt. Express 18, 8824–8835 (2010).
    [CrossRef]
  7. C. Lee, G. Seo, J. Lee, T.-h. Han, and J. G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express 19, 24762–24774 (2011).
    [CrossRef]
  8. N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35, 1705–1710 (1996).
    [CrossRef]
  9. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [CrossRef]
  10. J. Hong, S.-W. Min, and B. Lee, “Integral floating display systems for augmented reality,” Appl. Opt. 51, 4201–4209 (2012).
    [CrossRef]
  11. C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
    [CrossRef]
  12. L. Smoot, Q. Smithwick, and D. Reetz, “A volumetric display based on a rim-driven varifocal beamsplitter and led backlit LCD,” in ACM SIGGRAPH 2011 Emerging Technologies (ACM, 2011), p. 22.
  13. A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
    [CrossRef]
  14. Y. Takaki and S. Uchida, “Table screen 360-degree three-dimensional display using a small array of high-speed projectors,” Opt. Express 20, 8848–8861 (2012).
    [CrossRef]
  15. Y. Peng, H. Li, Q. Zhong, and X. Liu, “Liquid-crystal-display-based touchable light field three-dimensional display using display-capture mapping calibration,” Appl. Opt. 51, 6014–6019 (2012).
    [CrossRef]
  16. T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.
  17. J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.
  18. W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [CrossRef]

2012

2011

C. Lee, G. Seo, J. Lee, T.-h. Han, and J. G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express 19, 24762–24774 (2011).
[CrossRef]

J.-C. Liou and F.-H. Chen, “Design and fabrication of optical system for time-multiplex autostereoscopic display,” Opt. Express 19, 11007–11017 (2011).
[CrossRef]

S. Li, H. Li, Z. Zheng, Y. Peng, S. Wang, and X. Liu, “Full-parallax three-dimensional display using new directional diffuser,” Chin. Opt. Lett. 9, 081202 (2011).

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

2010

2009

2007

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

2004

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

1996

1948

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Agocs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Balogh, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Bettio, F.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.

Bouvier, E.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Bovik, A. C.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

Chen, F.-H.

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.

Dodgson, N. A.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

N. A. Dodgson, “Analysis of the viewing zone of the Cambridge autostereoscopic display,” Appl. Opt. 35, 1705–1710 (1996).
[CrossRef]

Favalora, G. E.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Forgacs, T.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gobbetti, E.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Han, T.-h.

Holliman, N. S.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Hong, J.

Hong, K.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.

Jurik, J.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.

Lee, B.

Lee, C.

Lee, J.

Li, H.

Li, S.

Liang, D.

Liou, J.-C.

Liu, D.

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

Liu, X.

Luo, J.

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

Min, S.-W.

Nago, N.

Park, J. G.

Park, J.-H.

Peng, Y.

Pockett, L.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

Qi, L.

Reetz, D.

L. Smoot, Q. Smithwick, and D. Reetz, “A volumetric display based on a rim-driven varifocal beamsplitter and led backlit LCD,” in ACM SIGGRAPH 2011 Emerging Technologies (ACM, 2011), p. 22.

Seo, G.

Sheikh, H. R.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

Simoncelli, E. P.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

Smithwick, Q.

L. Smoot, Q. Smithwick, and D. Reetz, “A volumetric display based on a rim-driven varifocal beamsplitter and led backlit LCD,” in ACM SIGGRAPH 2011 Emerging Technologies (ACM, 2011), p. 22.

Smoot, L.

L. Smoot, Q. Smithwick, and D. Reetz, “A volumetric display based on a rim-driven varifocal beamsplitter and led backlit LCD,” in ACM SIGGRAPH 2011 Emerging Technologies (ACM, 2011), p. 22.

Takaki, Y.

Uchida, S.

Wang, A.

Wang, Q.

Wang, S.

Xia, X. X.

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

Xie, J.

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

Yan, C.

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

Zanetti, G.

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

Zheng, Z.

Zhong, Q.

Zhou, W.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

ACM Trans. Graph.

A. Jones, I. McDowall, H. Yamada, M. Bolas, P. Debevec, A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26, 40 (2007).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

IEEE Trans. Broadcast.

N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, “Three-dimensional displays: a review and applications analysis,” IEEE Trans. Broadcast. 57, 362–371 (2011).
[CrossRef]

IEEE Trans. Image Process.

W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[CrossRef]

Nature

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Eng.

C. Yan, X. Liu, D. Liu, J. Xie, X. X. Xia, and H. Li, “Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array,” Opt. Eng. 50, 034003 (2011).
[CrossRef]

Opt. Express

Other

T. Agocs, T. Balogh, T. Forgacs, F. Bettio, E. Gobbetti, G. Zanetti, and E. Bouvier, “A large scale interactive holographic display,” in Virtual Reality Conference, 2006 (IEEE, 2006), p. 311.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2011), pp. 15–20.

L. Smoot, Q. Smithwick, and D. Reetz, “A volumetric display based on a rim-driven varifocal beamsplitter and led backlit LCD,” in ACM SIGGRAPH 2011 Emerging Technologies (ACM, 2011), p. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the 360° display system.

Fig. 2.
Fig. 2.

Illustration of display principle. The two circles show the images seen from views V1 and V2.

Fig. 3.
Fig. 3.

Illustration of multiview display reconstruction method.

Fig. 4.
Fig. 4.

Multiview reconstruction algorithm in retangular coordinates. (a) General structure. (b) In xz plane. (c) In yz plane.

Fig. 5.
Fig. 5.

Illustration of setup of SVZs.

Fig. 6.
Fig. 6.

Illustration of light-field display reconstruction method.

Fig. 7.
Fig. 7.

Light-field reconstruction algorithm in the xz plane.

Fig. 8.
Fig. 8.

Illustration of arrangement of projectors in prototype.

Fig. 9.
Fig. 9.

Comparison of multiview reconstruction applying different numbers of SVZs and light-field reconstruction. (a) Camera is set exactly at the center of the view zone. (b) Camera is set midway between adjacent view zones.

Fig. 10.
Fig. 10.

Comparison of images from center of view zone and between adjacent view zones using SSIM.

Fig. 11.
Fig. 11.

Comparison of reconstructed images and source images using SSIM.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{zsz1RVcos(iδ)z1=xsx1RVsin(iδ)x1zs2+xs2=R2,
xi=Dxszs+D,xi[DRVsin(θiδ/2)D+RVcos(θiδ/2),DRVsin(θi+δ/2)D+RVcos(θi+δ/2)),
x={xi|iZ,|θi|<ω},
y=DR+D[(y1hR)(RVR)RVz1+hRhD]+(R+D)hD,
(x2,y2,z2)=R(θ)(x1,y1,z1),
{zsz1RVcos(iδ/n)z1=xsx1RVsin(iδ/n)x1zs2+xs2=R2,
xi=Dxszs+D,xi[DRVsin(θiδ/2n)D+RVcos(θiδ/2n),DRVsin(θi+δ/2n)D+RVcos(θi+δ/2n)),
xi=Dxszs+D=DRVsinθD+RVcosθ,
x=Dx1z1+D.

Metrics