N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).

[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

J. M. Geary, Introduction to Lens Design with Practical ZEMAX Examples (Willmann-Bell, 2002).

J. W. Goodman, A. R. Dias, and L. M. Woody, “Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms,” Opt. Lett. 2, 1–3 (1978).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Publishing House of Electronics Industry, 2006), Chap. 8, p. 206.

P. Le, D. Y. Zang, and Chen S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix-vector and matrix-matrix multiplications,” App. Opt. 27, 1780–1785 (1988).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

P. Le, D. Y. Zang, and Chen S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix-vector and matrix-matrix multiplications,” App. Opt. 27, 1780–1785 (1988).

[CrossRef]

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

X. C. Yuan, Optical Design (Science, 1983).

P. Le, D. Y. Zang, and Chen S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix-vector and matrix-matrix multiplications,” App. Opt. 27, 1780–1785 (1988).

[CrossRef]

Y. M. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008).

P. Le, D. Y. Zang, and Chen S. Tsai, “Integrated electrooptic Bragg modulator modules for matrix-vector and matrix-matrix multiplications,” App. Opt. 27, 1780–1785 (1988).

[CrossRef]

L. J. Cheng and G. Gheen, “Matrix-vector multiplication in thin photorefractive GaAs crystals,” Appl. Opt. 27, 4236–4238 (1988).

[CrossRef]

D. Casasent and J. Jackson, “Space and frequency-multiplexed optical linear algebra processor: fabrication and initial tests,” Appl. Opt. 25, 2258–2263 (1986).

[CrossRef]

M. Gruber, “Multichip module with planar-integrated free-space optical vector-matrix-type interconnects,” Appl. Opt. 43, 463–470 (2004).

[CrossRef]

C. K. Gary, “Matrix-vector multiplication using digital partitioning for more accurate optical computing,” Appl. Opt. 31, 6205–6211 (1992).

[CrossRef]

M. Kamal, S. Narayanswamy, and M. Packirisamy, “Optical design of a line-focused forward-viewing scanner for optical coherence tomography,” Appl. Opt. 49, 6170–6178 (2010).

[CrossRef]

H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4, 261–263 (2010).

[CrossRef]

N. T. Shaked, T. Tabib, G. Simon, S. Messika, S. Dolev, and J. Rosen, “Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems,” Opt. Eng. 46, 108201 (2007).

[CrossRef]

C. K. Gary, “Comparison of optics and electronics for the calculation of matrix-vector products,” Proc. SPIE 1704, 544–555 (1992).

[CrossRef]

J. A. Carter, D. R. Pape, P. A. Wasilousky, and T. A. Sunderlin, “High-performance optical vector-matrix coprocessor,” Proc. SPIE 2297, 225–236 (1994).

[CrossRef]

X. C. Yuan, Optical Design (Science, 1983).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Publishing House of Electronics Industry, 2006), Chap. 8, p. 206.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

ZEMAX, Optical Design Program, User’s Guide (ZEMAX, 2007).

J. M. Geary, Introduction to Lens Design with Practical ZEMAX Examples (Willmann-Bell, 2002).

Y. M. Zhang, Applied Optics (Publishing House of Electronics Industry, 2008).