Abstract

Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s52p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Donahue and G. H. Dieke, “Oscillatory phenomena in direct current glow discharges,” Phys. Rev. 81, 248–261 (1951).
    [CrossRef]
  2. A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
    [CrossRef]
  3. A. Von Engel, Ionized Gases (Clarendon, 1965).
  4. K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
    [CrossRef]
  5. S. P. Lee and E. W. Rothe, “Influence of electrical resonance on the interpretation of optogalvanic data,” J. Appl. Phys. 61, 109–112 (1987).
    [CrossRef]
  6. L. F. M. Braun and J. A. Lisboa, “Observation of damped oscillations in the optogalvanic effect in a subnormal glow discharge,” Opt. Commun. 108, 302–310 (1994).
    [CrossRef]
  7. B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
    [CrossRef]
  8. X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
    [CrossRef]
  9. V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
    [CrossRef]
  10. G.-Y. Yan, K.-I. Fujii, and A. L. Schawlow, “Relaxation-oscillator detection of optogalvanic spectra,” Opt. Lett. 15, 142–144 (1990).
    [CrossRef]
  11. J. R. Nestor, “Optogalvanic spectra of neon and argon in glow discharge lamps,” Appl. Opt. 21, 4154–4156 (1982).
    [CrossRef]
  12. A. Bogaerts and R. Gijbels, “Fundamental aspects and applications of glow discharge spectrometric techniques,” Spectrochim. Acta B 53, 1–42 (1998).
    [CrossRef]
  13. R. A. Keller and E. F. Zalewski, “Noise consideration, signal magnitudes and detection limits in a hollow cathode discharge by optogalvanic spectroscopy,” Appl. Opt. 19, 3301–3305 (1980).
    [CrossRef]
  14. K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
    [CrossRef]
  15. J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).
  16. R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
    [CrossRef]
  17. N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable P32 and P30 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
    [CrossRef]
  18. F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
    [CrossRef]
  19. E. C. Jung and J. Lee, “Specific behaviors of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
    [CrossRef]
  20. E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
    [CrossRef]
  21. D. Zhechev and S. Atanassova, “Time dependent optogalvanic reaction and stability to disturbance of an optogalvanic circuit with hollow cathode discharge,” Opt. Commun. 156, 400–408 (1998).
    [CrossRef]
  22. D. E. Eastman, “Photoelectric work functions of transition, rare-earth and noble metals,” Phys. Rev. B 2, 1–2 (1970).
    [CrossRef]
  23. N. S. Kopeika and J. Rosenbaum, “Subnormal glow discharge detection of optical and microwave radiation,” IEEE Trans. Plasma Sci. 4, 51–61 (1976).
    [CrossRef]
  24. I. Stefanovic and Z. L. Petrovic, “Volt ampere characteristics of low current dc discharges in Ar, H2, CH4 and SF6,” Jpn. J. Appl. Phys. 36, 4728–4732 (1997).
    [CrossRef]
  25. G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
    [CrossRef]
  26. A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
    [CrossRef]
  27. F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
    [CrossRef]
  28. X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
    [CrossRef]
  29. P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
    [CrossRef]

2012 (1)

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

2010 (1)

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

2009 (1)

P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
[CrossRef]

2008 (1)

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

2004 (1)

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

2001 (1)

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

1999 (1)

E. C. Jung and J. Lee, “Specific behaviors of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

1998 (3)

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

D. Zhechev and S. Atanassova, “Time dependent optogalvanic reaction and stability to disturbance of an optogalvanic circuit with hollow cathode discharge,” Opt. Commun. 156, 400–408 (1998).
[CrossRef]

A. Bogaerts and R. Gijbels, “Fundamental aspects and applications of glow discharge spectrometric techniques,” Spectrochim. Acta B 53, 1–42 (1998).
[CrossRef]

1997 (1)

I. Stefanovic and Z. L. Petrovic, “Volt ampere characteristics of low current dc discharges in Ar, H2, CH4 and SF6,” Jpn. J. Appl. Phys. 36, 4728–4732 (1997).
[CrossRef]

1994 (2)

F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
[CrossRef]

L. F. M. Braun and J. A. Lisboa, “Observation of damped oscillations in the optogalvanic effect in a subnormal glow discharge,” Opt. Commun. 108, 302–310 (1994).
[CrossRef]

1993 (1)

A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
[CrossRef]

1990 (2)

G.-Y. Yan, K.-I. Fujii, and A. L. Schawlow, “Relaxation-oscillator detection of optogalvanic spectra,” Opt. Lett. 15, 142–144 (1990).
[CrossRef]

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

1987 (1)

S. P. Lee and E. W. Rothe, “Influence of electrical resonance on the interpretation of optogalvanic data,” J. Appl. Phys. 61, 109–112 (1987).
[CrossRef]

1986 (1)

K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
[CrossRef]

1983 (1)

A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
[CrossRef]

1982 (1)

1980 (1)

1979 (2)

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
[CrossRef]

1976 (1)

N. S. Kopeika and J. Rosenbaum, “Subnormal glow discharge detection of optical and microwave radiation,” IEEE Trans. Plasma Sci. 4, 51–61 (1976).
[CrossRef]

1975 (1)

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable P32 and P30 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

1970 (2)

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

D. E. Eastman, “Photoelectric work functions of transition, rare-earth and noble metals,” Phys. Rev. B 2, 1–2 (1970).
[CrossRef]

1951 (1)

T. Donahue and G. H. Dieke, “Oscillatory phenomena in direct current glow discharges,” Phys. Rev. 81, 248–261 (1951).
[CrossRef]

Atanassova, S.

D. Zhechev and S. Atanassova, “Time dependent optogalvanic reaction and stability to disturbance of an optogalvanic circuit with hollow cathode discharge,” Opt. Commun. 156, 400–408 (1998).
[CrossRef]

Barbieri, B.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Ben-Amar, A.

A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
[CrossRef]

Bentz, B. L.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Beverini, N.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Blosser, M. C.

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

Bogaerts, A.

A. Bogaerts and R. Gijbels, “Fundamental aspects and applications of glow discharge spectrometric techniques,” Spectrochim. Acta B 53, 1–42 (1998).
[CrossRef]

Braun, L. F. M.

L. F. M. Braun and J. A. Lisboa, “Observation of damped oscillations in the optogalvanic effect in a subnormal glow discharge,” Opt. Commun. 108, 302–310 (1994).
[CrossRef]

Bruhn, C. G.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Chandran, H.

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

Chiu, L. Y. C.

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable P32 and P30 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

Cho, H.

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Daccurso, V.

F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
[CrossRef]

Dieke, G. H.

T. Donahue and G. H. Dieke, “Oscillatory phenomena in direct current glow discharges,” Phys. Rev. 81, 248–261 (1951).
[CrossRef]

Donahue, T.

T. Donahue and G. H. Dieke, “Oscillatory phenomena in direct current glow discharges,” Phys. Rev. 81, 248–261 (1951).
[CrossRef]

Eastman, D. E.

D. E. Eastman, “Photoelectric work functions of transition, rare-earth and noble metals,” Phys. Rev. B 2, 1–2 (1970).
[CrossRef]

Erez, G.

A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
[CrossRef]

G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
[CrossRef]

Fajen, F. E.

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Fujii, K.-I.

Gijbels, R.

A. Bogaerts and R. Gijbels, “Fundamental aspects and applications of glow discharge spectrometric techniques,” Spectrochim. Acta B 53, 1–42 (1998).
[CrossRef]

Han, X. L.

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
[CrossRef]

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

Haridass, C.

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

Harrison, W. W.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Hirose, C.

K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
[CrossRef]

Jelenkovic, B. M.

A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
[CrossRef]

John, R. M. St.

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Jung, E. C.

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

E. C. Jung and J. Lee, “Specific behaviors of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Keller, R. A.

Khare, R.

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Kopeika, N. S.

N. S. Kopeika and J. Rosenbaum, “Subnormal glow discharge detection of optical and microwave radiation,” IEEE Trans. Plasma Sci. 4, 51–61 (1976).
[CrossRef]

Lavi, S.

G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
[CrossRef]

Lee, J.

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

E. C. Jung and J. Lee, “Specific behaviors of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Lee, J.-H.

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

Lee, S. P.

S. P. Lee and E. W. Rothe, “Influence of electrical resonance on the interpretation of optogalvanic data,” J. Appl. Phys. 61, 109–112 (1987).
[CrossRef]

Lin, C. C.

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Lisboa, J. A.

L. F. M. Braun and J. A. Lisboa, “Observation of damped oscillations in the optogalvanic effect in a subnormal glow discharge,” Opt. Commun. 108, 302–310 (1994).
[CrossRef]

Maeda, S.

K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
[CrossRef]

Manzano, F. A.

F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
[CrossRef]

Miron, E.

G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
[CrossRef]

Misra, I.

P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
[CrossRef]

Misra, P.

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
[CrossRef]

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

Nestor, J. R.

Nundy, U.

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

Petrovic, Z. L.

I. Stefanovic and Z. L. Petrovic, “Volt ampere characteristics of low current dc discharges in Ar, H2, CH4 and SF6,” Jpn. J. Appl. Phys. 36, 4728–4732 (1997).
[CrossRef]

Petrovic, Z. Lj.

A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
[CrossRef]

Phelps, A. V.

A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
[CrossRef]

Rho, S. P.

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Rosenbaum, J.

N. S. Kopeika and J. Rosenbaum, “Subnormal glow discharge detection of optical and microwave radiation,” IEEE Trans. Plasma Sci. 4, 51–61 (1976).
[CrossRef]

Rothe, E. W.

S. P. Lee and E. W. Rothe, “Influence of electrical resonance on the interpretation of optogalvanic data,” J. Appl. Phys. 61, 109–112 (1987).
[CrossRef]

Saini, V. K.

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Sasso, A.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Schawlow, A. L.

Sharpton, F. A.

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Shrivastava, V. K.

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Shrivastva, V. K.

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

Shukar, R.

A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
[CrossRef]

Slezak, V. B.

F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
[CrossRef]

Small-Warren, N. E.

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable P32 and P30 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

Smyth, K. C.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Stefanovic, I.

I. Stefanovic and Z. L. Petrovic, “Volt ampere characteristics of low current dc discharges in Ar, H2, CH4 and SF6,” Jpn. J. Appl. Phys. 36, 4728–4732 (1997).
[CrossRef]

Su, M. C.

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

Tochigi, K.

K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
[CrossRef]

Von Engel, A.

A. Von Engel, Ionized Gases (Clarendon, 1965).

Yan, G.-Y.

Zalewski, E. F.

Zhechev, D.

D. Zhechev and S. Atanassova, “Time dependent optogalvanic reaction and stability to disturbance of an optogalvanic circuit with hollow cathode discharge,” Opt. Commun. 156, 400–408 (1998).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

G. Erez, S. Lavi, and E. Miron, “A simplified theory of the optogalvanic effect,” IEEE J. Quantum Electron. 15, 1328–1332 (1979).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

N. S. Kopeika and J. Rosenbaum, “Subnormal glow discharge detection of optical and microwave radiation,” IEEE Trans. Plasma Sci. 4, 51–61 (1976).
[CrossRef]

J. Am. Chem. Soc. (1)

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

J. Appl. Phys. (2)

A. Ben-Amar, G. Erez, and R. Shukar, “Pulsed resonant optogalvanic effect in neon discharges,” J. Appl. Phys. 54, 3688–3698 (1983).
[CrossRef]

S. P. Lee and E. W. Rothe, “Influence of electrical resonance on the interpretation of optogalvanic data,” J. Appl. Phys. 61, 109–112 (1987).
[CrossRef]

J. Korean Phys. Soc. (1)

J.-H. Lee, H. Cho, E. C. Jung, and J. Lee, “Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow cathode discharge,” J. Korean Phys. Soc. 38, 99–102 (2001).

J. Mol. Struct. (1)

X. L. Han, M. C. Su, C. Haridass, and P. Misra, “Collisional dynamics of the first excited state of neon in the 590–670 nm region using laser optogalvanic spectroscopy,” J. Mol. Struct. 695–696, 155–162 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

I. Stefanovic and Z. L. Petrovic, “Volt ampere characteristics of low current dc discharges in Ar, H2, CH4 and SF6,” Jpn. J. Appl. Phys. 36, 4728–4732 (1997).
[CrossRef]

Nonlinear Anal. (1)

P. Misra, I. Misra, and X. L. Han, “Laser optogalvanic spectroscopy of neon at 659.9 nm in a discharge plasma and nonlinear least-squares fitting of associated waveforms,” Nonlinear Anal. 71, e661–e664 (2009).
[CrossRef]

Opt. Commun. (7)

F. A. Manzano, V. B. Slezak, and V. Daccurso, “Simple model for the optogalvanic effect in a neon negative glow discharge,” Opt. Commun. 109, 65–70 (1994).
[CrossRef]

R. Khare, V. K. Saini, V. K. Shrivastva, and U. Nundy, “Observation of Penning ionization in Zr–Ne discharge by optogalvanic effect,” Opt. Commun. 283, 542–546 (2010).
[CrossRef]

E. C. Jung and J. Lee, “Specific behaviors of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

D. Zhechev and S. Atanassova, “Time dependent optogalvanic reaction and stability to disturbance of an optogalvanic circuit with hollow cathode discharge,” Opt. Commun. 156, 400–408 (1998).
[CrossRef]

L. F. M. Braun and J. A. Lisboa, “Observation of damped oscillations in the optogalvanic effect in a subnormal glow discharge,” Opt. Commun. 108, 302–310 (1994).
[CrossRef]

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

T. Donahue and G. H. Dieke, “Oscillatory phenomena in direct current glow discharges,” Phys. Rev. 81, 248–261 (1951).
[CrossRef]

Phys. Rev. A (2)

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable P32 and P30 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Phys. Rev. B (1)

D. E. Eastman, “Photoelectric work functions of transition, rare-earth and noble metals,” Phys. Rev. B 2, 1–2 (1970).
[CrossRef]

Phys. Rev. E (1)

A. V. Phelps, Z. Lj. Petrovic, and B. M. Jelenkovic, “Oscillations of low-current electrical discharges between parallel-plane electrodes-III,” Phys. Rev. E 47, 2825–2838 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tochigi, S. Maeda, and C. Hirose, “Optogalvanic observation of ionization waves in hollow cathode discharge,” Phys. Rev. Lett. 57, 711–714 (1986).
[CrossRef]

Rev. Mod. Phys. (1)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Spectrochim. Acta B (1)

A. Bogaerts and R. Gijbels, “Fundamental aspects and applications of glow discharge spectrometric techniques,” Spectrochim. Acta B 53, 1–42 (1998).
[CrossRef]

Thin Solid Films (1)

X. L. Han, M. C. Blosser, P. Misra, and H. Chandran, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

Other (1)

A. Von Engel, Ionized Gases (Clarendon, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. The symbols used stand for the following: CVL, copper vapor laser; HVPS, high-voltage power supply; OSC, oscilloscope, ML, miniature neon lamp; BS, beam splitter; D, pair of protecting diodes; Rb, ballast resistance; C, coupling capacitance.

Fig. 2.
Fig. 2.

IV characteristic and dynamic resistance (Rd=dV/dI) curve of miniature neon discharge lamp. The empty red circles plot stands for measured IV characteristic data points, and solid blue dots represent calculated data points of dynamic resistance (Rd=dV/dI).

Fig. 3.
Fig. 3.

Emission spectrum of the miniature neon discharge lamp.

Fig. 4.
Fig. 4.

Time-resolved OG signal at 588.2 nm corresponding to neon (1s52p2) transition for (a) 2.0 mA current in positive resistance region (Rd>0) and (b) 135 μA current in negative resistance region (Rd<0).

Fig. 5.
Fig. 5.

OG signal temporal profile for neon (1s52p2) transition at 588.2 nm when lamp is operated at different discharge currents in the negative dynamic resistance region.

Fig. 6.
Fig. 6.

Partial energy level diagram for neon gas and electrode sputtered metal atoms (M). The electrodes of the lamp are made of an alloy (Ni, Cu, and Fe) with “I.P” 61579, 62317, and 63,700cm1, and their corresponding excited ion energy levels 3d8(P3/23)4p, 3d9(D3/22)4p, and 3d6(G9/23)4p lie at 133,954, 134,237, and 134,224cm1, respectively.

Fig. 7.
Fig. 7.

(a) Simplified electrical diagram of the experimental setup. (b) Equivalent discharge-OG circuit diagram.

Fig. 8.
Fig. 8.

Oscillations in OG signal observed in the negative dynamic resistance region at extreme possible low discharge current of 135 μA and fitted to the derived function V(t)=V0Exp(αt)Sin(ωt+Φ).

Fig. 9.
Fig. 9.

Damping coefficient (α) versus negative dynamic resistance (Rd) plot.

Tables (1)

Tables Icon

Table 1. Parameters Related to Discharge-Plasma Oscillations Obtained by Fitting the Oscillating Component of OG Signals Recorded in Fig. 5 to the Derived Function [V(t)=V0Exp(αt)Sin(ωt+Φ)]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δIp(t)=V(t)/Rb+V(t)/Xc+V(t)/ZL,
1=V(s)[1/Rb+SCt+1/(Rd+SLd)],OrV(s)=(1/Ct)[(Rd/Ld+S)]/[(S+α)2+ω2],
V(s)=A/(S+α+jω)+B/(S+αjω).
V(t)=A·Exp{(α+jω)t}+B·Exp{(αjω)t}.
V(t)=A·Exp(γ1t)+B·Exp(γ2t),
(Rd/Ld+1/RbCt)/2>[(1+Rd/Rb)/LdCt]1/2
V(t)=V0Exp(αt)Sin(ωt+Φ).

Metrics