Abstract

Precision optical systems that utilize laser beams as working media usually suffer from thermal aberrations caused by absorbed energy. Based on a specially designed three-lens system, the causes and contributions of mechanical structures to the system’s thermal aberrations are studied. The contribution of three thermal effects, surface deformation, change of refractive index, and stress birefringence on the system’s thermal aberrations, is analyzed respectively through an integrated optomechanical simulation method. The impact of the structure’s thermal dissipating capability and structure configuration on the system’s thermal aberrations is analyzed, too. Experiments have been carried out to validate the correctness and accuracy of the simulation method. Both the simulated and tested results can provide a reference for structure design and thermal aberration analysis of the similar optical systems.

© 2013 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription