Abstract

In view of its feasibility for fabrication and application, a bend-resistant large-mode-area photonic crystal fiber with a triangular core is proposed. In our design, the fiber proposes a solution to the issue of bend distortion. The mode field area of the fundamental mode at the wavelength of 1.064 μm achieves 930μm2 at the straight state and 815μm2 at a bending radius of 30 cm, respectively. The decrement of the mode field area at the bend state is only 12.473% compared to the straight state. Furthermore, when the fiber is bent with a bending radius of 30 cm, numerical results demonstrate that the fiber conforms to single-mode operation conditions and the bending orientation angle can be extended to ±55°. A large mode area at bent state and low sensitivity of bending orientation make the fiber of great potential in high-power fiber lasers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Limit of effective area for single-mode operation in step-index large mode area laser fibers,” J. Lightwave Technol. 27, 3010–3016 (2009).
    [CrossRef]
  2. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
    [CrossRef]
  3. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697 (2007).
    [CrossRef]
  4. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15, 1794–1803 (2007).
    [CrossRef]
  5. I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
    [CrossRef]
  6. I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
    [CrossRef]
  7. M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
    [CrossRef]
  8. D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011).
    [CrossRef]
  9. M. Napierała, T. Nasiłowski, E. Bereś-Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fibre with low bending loss,” Opt. Express 18, 15408–15418 (2010).
    [CrossRef]
  10. M. Napierała, T. Nasilowski, E. Bereś-Pawlik, P. Mergo, F. Berghmans, and H. Thienpont, “Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss,” Opt. Express 19, 22628–22636 (2011).
    [CrossRef]
  11. M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011).
    [CrossRef]
  12. B. Rahman, “Finite element analysis of optical waveguides,” Progress Electromagn. Res. 10, 187–216 (1995).
  13. S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
    [CrossRef]
  14. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  15. J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
    [CrossRef]
  16. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single-mode holey fibers with low bending losses,” Opt. Express 13, 4770–4779 (2005).
    [CrossRef]
  17. J. Olszewski and M. Szpulak, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015–6022 (2005).
    [CrossRef]
  18. A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
    [CrossRef]
  19. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
    [CrossRef]

2011 (4)

2010 (4)

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

M. Napierała, T. Nasiłowski, E. Bereś-Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fibre with low bending loss,” Opt. Express 18, 15408–15418 (2010).
[CrossRef]

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

2009 (1)

2007 (3)

2005 (3)

2003 (2)

K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
[CrossRef]

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

1995 (1)

B. Rahman, “Finite element analysis of optical waveguides,” Progress Electromagn. Res. 10, 187–216 (1995).

1986 (1)

A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Abdelaziz, I.

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

AbdelMalek, F.

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

Ademgil, H.

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

Beres-Pawlik, E.

Berghmans, F.

Bouchriha, H.

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

Castle, P.

A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Chen, M. Y.

M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011).
[CrossRef]

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

Chen, X.

Dong, L.

Gorman, T.

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

Gray, S.

Guenneu, S.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Harris, A.

A. Harris and P. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius,” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Haxha, S.

I. Abdelaziz, F. AbdelMalek, H. Ademgil, S. Haxha, T. Gorman, and H. Bouchriha, “Enhanced effective area photonic crystal fiber with novel air hole design,” J. Lightwave Technol. 28, 2810–2817 (2010).
[CrossRef]

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Hu, D. J. J.

D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011).
[CrossRef]

Koshiba, M.

Lasquellec, S.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Li, J.

Li, M.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Limpert, J.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Liu, A.

Lou, S.

Luan, F.

D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011).
[CrossRef]

Martynkien, T.

J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
[CrossRef]

Mergo, P.

Napierala, M.

Nasilowski, T.

Nicolet, A.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Olszewski, J.

J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
[CrossRef]

J. Olszewski and M. Szpulak, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015–6022 (2005).
[CrossRef]

Peng, X.

Rahman, B.

B. Rahman, “Finite element analysis of optical waveguides,” Progress Electromagn. Res. 10, 187–216 (1995).

Röser, F.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Saitoh, K.

Sato, Y.

Schreiber, T.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Shum, P. P.

D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011).
[CrossRef]

Sun, B.

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

Szpulak, M.

J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
[CrossRef]

J. Olszewski and M. Szpulak, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015–6022 (2005).
[CrossRef]

Tang, Z.

Thienpont, H.

Tong, Y. Q.

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

Tsuchida, Y.

Tünnermann, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Urbanczyk, W.

J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
[CrossRef]

Walton, D. T.

Wang, J.

Wang, L.

Wójcik, J.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Zenteno, L. A.

Zhang, Y. K.

M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29, 2216–2222 (2011).
[CrossRef]

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

Zhou, J.

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

Zolla, F.

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Appl. Opt. (1)

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38, S681–S693 (2005).
[CrossRef]

Opt. Commun. (4)

I. Abdelaziz, H. Ademgil, F. AbdelMalek, S. Haxha, T. Gorman, and H. Bouchriha, “Design of a large effective mode area photonic crystal fiber with modified rings,” Opt. Commun. 283, 5218–5223 (2010).
[CrossRef]

M. Y. Chen, B. Sun, Y. K. Zhang, Y. Q. Tong, and J. Zhou, “Design of all-solid large-mode area microstructured-core optical fibers,” Opt. Commun. 283, 3153–3157 (2010).
[CrossRef]

D. J. J. Hu, F. Luan, and P. P. Shum, “All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss,” Opt. Commun. 284, 1811–1814 (2011).
[CrossRef]

J. Olszewski, M. Szpulak, T. Martynkien, W. Urbańczyk, F. Berghmans, T. Nasiłowski, and H. Thienpont, “Analytical evaluation of bending loss oscillations in photonic crystal fibers,” Opt. Commun. 269, 261–270 (2007).
[CrossRef]

Opt. Express (6)

Progress Electromagn. Res. (2)

B. Rahman, “Finite element analysis of optical waveguides,” Progress Electromagn. Res. 10, 187–216 (1995).

S. Guenneu, A. Nicolet, F. Zolla, and S. Lasquellec, “Numerical and theoretical study of photonic crystal fibers,” Progress Electromagn. Res. 41, 271–305 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross section of the proposed triangular-core LMA PCF. d0 is the diameter of air holes in the inner ring, d1 is the diameter of air holes diameter in the outer rings, Λ is the hole pitch, θ is the bending orientation angle.

Fig. 2.
Fig. 2.

(a) Confinement loss and (b) mode field area of the fundamental mode as functions of the wavelength. The black solid line represents y polarization and the blue dashed line represents x polarization.

Fig. 3.
Fig. 3.

Bending properties of LMA PCF. (a) Bending loss and (b) the mode field area of the fundamental mode as functions of bending radius. The black solid line represents y polarization and the blue dashed line represents x polarization.

Fig. 4.
Fig. 4.

Mode field distribution of the fundamental mode. (a) and (b) represent the fundamental mode when the fiber is kept straight. (c) and (d) represent the fundamental mode when the fiber is bent at a radius of 30 cm.

Fig. 5.
Fig. 5.

(a) Bending loss and (b) mode field area as functions of bending orientation angle at a bending radius of 30 cm. The black solid line and the blue dashed line represent y polarization and x polarization of the fundamental mode. The black dashed lines represent four second-order modes.

Fig. 6.
Fig. 6.

Mode field distribution under different bending orientation angle with the value of (a) 0°, (b) 20°, (c) 40°, and (d) 60°.

Fig. 7.
Fig. 7.

Bending losses as functions of d0 and d1. The solid line and dash line represent the fundamental modes and second-order modes, respectively.

Fig. 8.
Fig. 8.

Bending loss as functions of bending orientation angle at a bending radius of 30 cm when the air hole diameters change by 1% (a) and +1% (b). The black solid line and the blue dashed line represent y polarization and x polarization of the fundamental mode. The black dashed lines represent four second-order modes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(x,y)=n0(x,y)(1+xcosθ+ysinθR),
MFA=(s|E|2dxdy)2s|E|4dxdy,
L=20ln10Im(β)=20ln10k0Im(neff),

Metrics