Abstract

In optical systems required to maintain the polarization states of the transiting light, mechanically induced stress birefringence can degrade performance, at least locally altering polarization phase and ultimately reducing polarization contrast. Although thermally induced stress birefringence can cause similar problems in imaging systems bearing high optical flux, appropriate design approaches to resolve this problem have been lacking. This paper first develops criteria to select optical glasses with reduced sensitivity to thermally induced stress birefringence. The design of projection lenses using the resulting thermal stress desensitized reduced glass list is then discussed, as is the application of such lenses in laser projection systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
    [CrossRef]
  2. G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
    [CrossRef]
  3. B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
    [CrossRef]
  4. L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).
  5. A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
    [CrossRef]
  6. L. Lipton, “Digital stereoscopic cinema: the 21st century,” SPIE Proc. 6803, 68030W (2008).
    [CrossRef]
  7. A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012).
    [CrossRef]
  8. L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006).
    [CrossRef]
  9. K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
    [CrossRef]
  10. D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).
  11. M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).
  12. J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).
  13. R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
    [CrossRef]
  14. D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).
  15. A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).
  16. Schott Glass Technical Notes, “TIE 27: Stress in Optical Glass, “TIE 32: Thermal Loads on Optical Glass,” http://www.us.schott.com/advanced_optics/english/community/technical-papers-and-tools/tie.html .
  17. A. Ahmad, ed., Handbook of Optomechanical Engineering (CRC Press, 1997).
  18. Schott Glass catalog, http://ebookbrowse.com/schott-optical-glass-pocket-catalog-europe-october-2011-en-pdf-d196213557 .
  19. Ohara Glass information, http://www.oharacorp.com/catalog.html .
  20. K. D. Sharma and M. Kumar, “New lens for 35 mm cinematograph projector,” Appl. Opt. 25, 4609–4613 (1986).
    [CrossRef]
  21. G. Berggren, “The evolution of the cinema lens—part 1,” SMPTE Motion Imag. J. 113, 430–441 (2004).
    [CrossRef]
  22. G. Berggren, “The evolution of the cinema lens—part 2,” SMPTE Motion Imag. J. 116, 87–103 (2007).
    [CrossRef]
  23. B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).
  24. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent3,748,015 (24July1973).

2012 (1)

A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012).
[CrossRef]

2011 (1)

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

2008 (2)

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

L. Lipton, “Digital stereoscopic cinema: the 21st century,” SPIE Proc. 6803, 68030W (2008).
[CrossRef]

2007 (1)

G. Berggren, “The evolution of the cinema lens—part 2,” SMPTE Motion Imag. J. 116, 87–103 (2007).
[CrossRef]

2006 (2)

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006).
[CrossRef]

2005 (1)

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

2004 (1)

G. Berggren, “The evolution of the cinema lens—part 1,” SMPTE Motion Imag. J. 113, 430–441 (2004).
[CrossRef]

2002 (2)

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
[CrossRef]

2000 (1)

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

1986 (1)

Aastuen, D.

D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).

Allan, D.

D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).

Berggren, G.

G. Berggren, “The evolution of the cinema lens—part 2,” SMPTE Motion Imag. J. 116, 87–103 (2007).
[CrossRef]

G. Berggren, “The evolution of the cinema lens—part 1,” SMPTE Motion Imag. J. 113, 430–441 (2004).
[CrossRef]

Bi, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Bietry, J.

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).

Bruning, J.

D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).

Brunotte, M.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Bruzzone, C.

D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).

Cantos, B. D.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Carey, G. P.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Cheng, H.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Chu, S. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Cline, R.

R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
[CrossRef]

Cobb, J.

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Darrow, D.

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

Doyle, K.

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

Duelli, M.

R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
[CrossRef]

Edlou, S.

L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006).
[CrossRef]

Edwards, R.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Ehrne, F.

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Fang, T.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Genberg, V.

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

Greenberg, M.

R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
[CrossRef]

Haggerty, J.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Hallstein, S.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Harris, C.

A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012).
[CrossRef]

Hartmaier, J.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Hitchens, W. R.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Hoffman, J.

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

Holderer, H.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Hollister, R.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Hornbeck, L. J.

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

Jansen, M.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Jia, Z. D.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Kaiser, W.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Kohl, A.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Kruschwitz, J.

B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).

Kugler, J.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Kumar, M.

Kurtz, A.

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).

B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).

Lee, D.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Lipton, L.

L. Lipton, “Digital stereoscopic cinema: the 21st century,” SPIE Proc. 6803, 68030W (2008).
[CrossRef]

Ma, J.

D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).

Maul, M.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Mi, X. D.

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Michels, G.

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

Min, H. T.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Mooradian, A.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Nelson, D.

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Nestorovic, N.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Niven, G.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Nothhard, G.

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Offner, A.

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent3,748,015 (24July1973).

Pelaprat, J.-M.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Pettitt, H.

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

Qi, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Ruiz, J.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Schmidt, J.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Scholz, K.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Sharma, K. D.

Shchegrov, A. V.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Silverstein, B.

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).

A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).

Sterling, R.

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

Stoops, J.

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

Sun, L.

L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006).
[CrossRef]

Umbrasas, A.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Wagner, C.

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

Walker, B.

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

Wang, B.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Wang, Y.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Wang, Y. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Watson, J. P.

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

Webb, J.

D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).

Werner, B.

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

Woods, A.

A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012).
[CrossRef]

Wu, T. J.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Xu, J. K.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Yan, B. X.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Yan, S. P.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Ye, C. W.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Zheng, G.

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

Appl. Opt. (1)

Displays (1)

R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002).
[CrossRef]

J. Disp. Technol. (1)

G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008).
[CrossRef]

J. Soc. Inf. Disp. (2)

A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006).
[CrossRef]

A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012).
[CrossRef]

Proc. SPIE (2)

A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005).
[CrossRef]

K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002).
[CrossRef]

SMPTE Motion Imag. J. (2)

G. Berggren, “The evolution of the cinema lens—part 1,” SMPTE Motion Imag. J. 113, 430–441 (2004).
[CrossRef]

G. Berggren, “The evolution of the cinema lens—part 2,” SMPTE Motion Imag. J. 116, 87–103 (2007).
[CrossRef]

Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. (2)

B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011).
[CrossRef]

L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).

SPIE Proc. (2)

L. Lipton, “Digital stereoscopic cinema: the 21st century,” SPIE Proc. 6803, 68030W (2008).
[CrossRef]

L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006).
[CrossRef]

Other (11)

D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).

M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).

J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).

B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent3,748,015 (24July1973).

D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).

A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).

Schott Glass Technical Notes, “TIE 27: Stress in Optical Glass, “TIE 32: Thermal Loads on Optical Glass,” http://www.us.schott.com/advanced_optics/english/community/technical-papers-and-tools/tie.html .

A. Ahmad, ed., Handbook of Optomechanical Engineering (CRC Press, 1997).

Schott Glass catalog, http://ebookbrowse.com/schott-optical-glass-pocket-catalog-europe-october-2011-en-pdf-d196213557 .

Ohara Glass information, http://www.oharacorp.com/catalog.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Original projection lens.

Fig. 2.
Fig. 2.

MTF of original projection lens.

Fig. 3.
Fig. 3.

Original relay lens.

Fig. 4.
Fig. 4.

MTF of original relay lens.

Fig. 5.
Fig. 5.

All fused silica and PBH56 projection lens.

Fig. 6.
Fig. 6.

All fused silica and SF57 relay lens.

Fig. 7.
Fig. 7.

MTF of all fused silica/PBH56 projection lens.

Fig. 8.
Fig. 8.

MTF of all fused silica and SF57 relay lens.

Fig. 9.
Fig. 9.

Reduced thermal stress projection lens.

Fig. 10.
Fig. 10.

MTF of reduced stress projection lens.

Fig. 11.
Fig. 11.

Reduced thermal stress relay lens.

Fig. 12.
Fig. 12.

MTF of reduced thermal stress relay lens.

Tables (3)

Tables Icon

Table 1. Glass Data and Figures of Merit

Tables Icon

Table 2. Projection Lens Figures of Merit

Tables Icon

Table 3. Relay Lens Figures of Merit

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δn=Δn1,2(x,y,z)=κΔσ1,2,
ΔnρEΔTκ/(1μ).
Q(z)=I(z)(1ti)/x=I(z)(1eαx)/z.
ΔTI0Lxα/4K,
ΔnI0LzρκαE4K(1μ).
M1=ρκαEK(1μ),
M2=I0LM1=I0LρκαEK(1μ),

Metrics