Abstract

A low-cost, high-sensitivity humidity sensor based on a low-loss dielectric thin film waveguide (WG) is presented. The guided mode is produced by coupling laser light into the film by optical tunneling through a solid gap deposited on the base of a semi-cylindrical lens. The light reflected from this optical system carries information about the refractive index of the medium neighboring the WG, and is detected by a low-cost CCD linear sensor and analyzed with a microcontroller or personal computer. The technique presents good sensitivity to relative humidity (RH) changes, especially below 10% RH, linear behavior between 20% and 80% RH, and a response time of a few seconds.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005).
    [CrossRef]
  2. C.-Y. Lee, “Humidity sensors: a review,” Sens. Lett. 3, 1–15 (2005).
    [CrossRef]
  3. H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
    [CrossRef]
  4. J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
    [CrossRef]
  5. A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
    [CrossRef]
  6. Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
    [CrossRef]
  7. Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
    [CrossRef]
  8. L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
    [CrossRef]
  9. B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
    [CrossRef]
  10. A. Alvarez-Herrero, H. Guerrero, E. Bernabeu, and D. Levy, “Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry,” Appl. Opt. 41, 6692–6701 (2002).
    [CrossRef]
  11. A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
    [CrossRef]
  12. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
    [CrossRef]
  13. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29, 1191–1193 (2004).
    [CrossRef]
  14. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
    [CrossRef]
  15. M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
    [CrossRef]
  16. F. R. Flory, ed., Thin Films for Optical System (CRC Press, 1995).
  17. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
    [CrossRef]
  18. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  19. R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970).
    [CrossRef]
  20. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2412 (1971).
    [CrossRef]
  21. Y. Levy, “Étude du champ inhomogène obtenu par la réflexion totale d’une onde plane sur un système de couches minces,” Nouv. Rev. d’Optique Appliquée 3, 25–30 (1972).
  22. J. Cardin and D. Leduc, “Determination of refractive index, thickness and the optical losses of thin films from prism-film coupling measurements,” Appl. Opt. 47, 894–900 (2008).
    [CrossRef]
  23. S. C. Zilio, “A simple method to measure critical angles for high-sensitivity differential refractometry,” Opt. Express 20, 1862–1867 (2012).
    [CrossRef]
  24. S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
    [CrossRef]
  25. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983).
    [CrossRef]
  26. D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005).
    [CrossRef]
  27. “Manufacturing Engineering Laboratory—Engineering Metrology Toolbox,” National Institute of Standard Technology, 28Dec.2011, http://emtoolbox.nist.gov/Main/Main.asp .
  28. W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
    [CrossRef]

2012

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
[CrossRef]

Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
[CrossRef]

S. C. Zilio, “A simple method to measure critical angles for high-sensitivity differential refractometry,” Opt. Express 20, 1862–1867 (2012).
[CrossRef]

2011

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

2009

J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
[CrossRef]

2008

2007

W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
[CrossRef]

2005

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005).
[CrossRef]

C.-Y. Lee, “Humidity sensors: a review,” Sens. Lett. 3, 1–15 (2005).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
[CrossRef]

D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005).
[CrossRef]

2004

L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29, 1191–1193 (2004).
[CrossRef]

A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
[CrossRef]

2003

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

2002

2000

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
[CrossRef]

1996

M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
[CrossRef]

1994

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

1983

1972

Y. Levy, “Étude du champ inhomogène obtenu par la réflexion totale d’une onde plane sur un système de couches minces,” Nouv. Rev. d’Optique Appliquée 3, 25–30 (1972).

1971

1970

Alvarez-Herrero, A.

A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
[CrossRef]

A. Alvarez-Herrero, H. Guerrero, E. Bernabeu, and D. Levy, “Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry,” Appl. Opt. 41, 6692–6701 (2002).
[CrossRef]

Ang, X. M.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Asay, D. B.

D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005).
[CrossRef]

Aspect, A.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Auza, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Balamurali, P.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Bernabeu, E.

Borguet, E.

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Brett, M. J.

J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
[CrossRef]

Buvailo, A.

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Cardin, J.

Chana, C. C.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Chen, L. H.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Chen, Z.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005).
[CrossRef]

Chertoriiski, A. A.

W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
[CrossRef]

Deng, C.

Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
[CrossRef]

Ecke, W.

W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
[CrossRef]

Fanguy, J. C.

Flory, F.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
[CrossRef]

Fonash, S. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Gaston, A.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Groger, H.

M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
[CrossRef]

Guerrero, H.

A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
[CrossRef]

A. Alvarez-Herrero, H. Guerrero, E. Bernabeu, and D. Levy, “Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry,” Appl. Opt. 41, 6692–6701 (2002).
[CrossRef]

Hines, J.

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Hua, Q. F.

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

Huang, T. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Huguet-Chantôme, P.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
[CrossRef]

Kaiser, R.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
[CrossRef]

Kim, S. H.

D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005).
[CrossRef]

Lakhtakia, A.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Leduc, D.

Lee, C.-Y.

C.-Y. Lee, “Humidity sensors: a review,” Sens. Lett. 3, 1–15 (2005).
[CrossRef]

Leipold, D.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Leong, K. C.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Levy, D.

A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
[CrossRef]

A. Alvarez-Herrero, H. Guerrero, E. Bernabeu, and D. Levy, “Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry,” Appl. Opt. 41, 6692–6701 (2002).
[CrossRef]

Levy, Y.

Y. Levy, “Étude du champ inhomogène obtenu par la réflexion totale d’une onde plane sur un système de couches minces,” Nouv. Rev. d’Optique Appliquée 3, 25–30 (1972).

Lévy, Y.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Li, T.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Li, X. J.

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

Li, Y.

Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
[CrossRef]

Liang, H.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Liu, Y. J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Lozano, I.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Lu, C.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005).
[CrossRef]

Macleod, H. A.

Martin, P. J.

Menon, R.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Mlynek, J.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Monneret, S.

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
[CrossRef]

Netterfield, R. P.

Neu, B.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Pacey, C. G.

Perez, F.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Sainty, W. G.

Seifert, W.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Sevilla, J.

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Shaillender, M.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Shi, J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
[CrossRef]

Singh, S.

B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
[CrossRef]

Soni, K.

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
[CrossRef]

Srivastava, R.

M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
[CrossRef]

Steele, J. J.

J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
[CrossRef]

Tao, S.

Taschuk, M. T.

J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
[CrossRef]

Tien, P. K.

Ulrich, R.

Vansteenkiste, N.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Verma, N.

B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
[CrossRef]

Vesnin, V. L.

W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
[CrossRef]

Wang, H. Y.

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

Wang, Y. Q.

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

Weiss, M. N.

M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
[CrossRef]

Wong, W. C.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Xing, Y.

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Xu, J.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Xu, L.

Yadav, B. C.

B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
[CrossRef]

Yang, M.

Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
[CrossRef]

Zhang, F.

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

Zilio, S. C.

Zu, P.

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996).
[CrossRef]

IEEE Sens.

A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004).
[CrossRef]

A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003).
[CrossRef]

Instrum. Exp. Tech.

W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007).
[CrossRef]

J. Opt. A

S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem. B

D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005).
[CrossRef]

Nouv. Rev. d’Optique Appliquée

Y. Levy, “Étude du champ inhomogène obtenu par la réflexion totale d’une onde plane sur un système de couches minces,” Nouv. Rev. d’Optique Appliquée 3, 25–30 (1972).

Opt. Commun.

R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994).
[CrossRef]

Opt. Express

Opt. Laser Technol.

B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012).
[CrossRef]

Opt. Lett.

Sens. Actuators B

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005).
[CrossRef]

H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012).
[CrossRef]

J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009).
[CrossRef]

A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011).
[CrossRef]

Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012).
[CrossRef]

Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011).
[CrossRef]

L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012).
[CrossRef]

Sens. Lett.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005).
[CrossRef]

C.-Y. Lee, “Humidity sensors: a review,” Sens. Lett. 3, 1–15 (2005).
[CrossRef]

Other

“Manufacturing Engineering Laboratory—Engineering Metrology Toolbox,” National Institute of Standard Technology, 28Dec.2011, http://emtoolbox.nist.gov/Main/Main.asp .

F. R. Flory, ed., Thin Films for Optical System (CRC Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Diagram showing the semi-cylindrical coupler, the low-index coupling layer, the WG layer, and the sample. (b) Optical setup using a 532 nm laser pointer and web camera.

Fig. 2.
Fig. 2.

(a) Image obtained with a web camera for attenuated laser power. (b) Intensity profile measured by the CCD linear array at lower and (c) higher laser powers.

Fig. 3.
Fig. 3.

Position of the minimum of the reflected profile as a function of RH for ZrO2 (solid circles) and Dralo (solid squares) at 22°C. The error bars are given by the uncertainty of the commercial sensor.

Fig. 4.
Fig. 4.

Position of the minimum of the reflected profile as a function of RH for and Dralo at 22°C. The error bars are given by the uncertainty of the commercial sensor. The solid line represents a simulation carried out with the Essential Macleod thin film coatings software, assuming that the water layer thickness is proportional to the RH.

Fig. 5.
Fig. 5.

Transient response curve for (a) ZrO2 and (b) Dralo WGs between 45% and 90% RH.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2dWωcnWcosθW=φWS+φWC+2mπ,

Metrics