Abstract

The static four-phase-divided imaging interferometry is a new technology of passive detection for the upper atmospheric wind field. It is featured with real-time detection, no moving parts, stability, and so on. In this paper, its basic theory is discussed, and its characteristics are briefly introduced. Furthermore, its key technical parameter, modulation depth, is analyzed. The relationships of modulation depth with the incident angle and temperature of the working environment are derived by using computer simulation. It is shown that the modulation depth decreases with the increase of the temperature and incident angle. The study provides a theoretical basis to increase the modulation depth of the interferometer, and it is of significance for the development of the upper atmosphere detection technique and theory.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ground-based airglow imaging interferometer. Part 2: forward model and inverse method

Yuanhe Tang, Xiaodong Duan, Haiyang Gao, Ouyang Qu, Qijie Jia, Xiangang Cao, Shenni Wei, and Rui Yang
Appl. Opt. 53(11) 2273-2282 (2014)

Complete optical throughput analysis of the static polarization wind imaging interferometer

Jinchan Wang, Chunmin Zhang, Lin Zhang, Wenyi Ren, and Xiaoke Sun
Appl. Opt. 52(11) 2248-2256 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription