Abstract

A method using a wedge-plate shear shifting system with adjustable accuracy and measuring range is proposed for measuring the focus shifting caused by thermal distortion in a single-shot laser system. Two beam splitter groups are used in this method to precisely split a single beam into multiple beams with different optical path difference. The focus shifting is determined by position change of the minimum spot on the detector. This method is convenient and economic, especially as it powerfully solves the problem of catching focus shifting in an ultrashort time.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990).
    [CrossRef]
  2. C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36, 1586–1595 (1997).
    [CrossRef]
  3. W. Wang, F. Tan, B. Lu, and C. Liu, “Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows,” Appl. Opt. 44, 7442–7450 (2005).
    [CrossRef]
  4. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
    [CrossRef]
  5. R. Kingslake, ed., Applied Optics and Optical Engineering (Academic, 1965), Vol. 1, pp. 208–226.
  6. Y. Nakano and K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985).
    [CrossRef]
  7. C. W. Chang and D. C. Su, “An improved technique of measuring the focal length of a lens,” Opt. Commun. 73, 257–262 (1989).
    [CrossRef]
  8. D. C. Su and C. W. Chang, “A new technique for measuring the effective focal length of a thick or a compound lens,” Opt. Commun. 78, 118–122 (1990).
    [CrossRef]
  9. L. M. Bernardo and O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry,” Appl. Opt. 27, 296–301 (1988).
    [CrossRef]
  10. I. Glatt and O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry,” Appl. Opt. 26, 2507–2508 (1987).
    [CrossRef]
  11. J. C. Bhattacharya and A. K. Aggarwal, “Measurement of the focal length of a collimating lens using the Talbot effect and the moiré technique,” Appl. Opt. 30, 4479–4480 (1991).
    [CrossRef]
  12. K. V. Sriram, M. P. Kothiyal, and R. S. Sirohi, “Talbot interferometry in noncollimated illumination for curvature and focal length measurements,” Appl. Opt. 31, 75–79 (1992).
    [CrossRef]
  13. V. I. Meshcheryakov, M. I. Sinel’nikov, and O. K. Filippov, “Measuring the focal lengths of long-focus optical systems,” J. Opt. Technol. 66, 458 (1999).
    [CrossRef]
  14. P. Singh, M. S. Faridi, C. Shakher, and R. S. Sirohi, “Measurement of focal length with phase-shifting Talbot interferometry,” Appl. Opt. 44, 1572–1576 (2005).
    [CrossRef]
  15. K. Matesuda, T. H. Barnes, B. F. Oreb, and C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” Appl. Opt. 38, 3542–3548 (1999).
    [CrossRef]
  16. T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.
  17. B. DeBoo and J. Sasian, “Precise focal-length measurement technique with a reflective Fresnel-zone hologram,” Appl. Opt. 42, 3903–3909 (2003).
    [CrossRef]
  18. K. Patorski, S. Yokozeki, and T. Suzuki, “Collimation test by double grating shearing interferometer,” Appl. Opt. 15, 1234–1240 (1976).
    [CrossRef]
  19. J. Choi, M. Perera, M. D. Aggarwal, R. P. Shukla, and M. V. Montravadi, “Wedge plate shearing interferometers for collimation testing: use of a moiré technique,” Appl. Opt. 34, 3628–3638 (1995).
    [CrossRef]
  20. Melles Griot, Lasers and Instruments Guide: Theory and Uses of Shear Plate Collimation Testers (Melles Griot, 1994), pp. 135-12–135-13.

2005 (2)

2003 (1)

2001 (1)

1999 (2)

1997 (1)

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36, 1586–1595 (1997).
[CrossRef]

1995 (1)

1992 (1)

1991 (1)

1990 (2)

D. C. Su and C. W. Chang, “A new technique for measuring the effective focal length of a thick or a compound lens,” Opt. Commun. 78, 118–122 (1990).
[CrossRef]

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990).
[CrossRef]

1989 (1)

C. W. Chang and D. C. Su, “An improved technique of measuring the focal length of a lens,” Opt. Commun. 73, 257–262 (1989).
[CrossRef]

1988 (1)

1987 (1)

1985 (1)

1976 (1)

Aggarwal, A. K.

Aggarwal, M. D.

Barnes, T. H.

Bernardo, L. M.

Bhattacharya, J. C.

Byer, R. L.

Chang, C. W.

D. C. Su and C. W. Chang, “A new technique for measuring the effective focal length of a thick or a compound lens,” Opt. Commun. 78, 118–122 (1990).
[CrossRef]

C. W. Chang and D. C. Su, “An improved technique of measuring the focal length of a lens,” Opt. Commun. 73, 257–262 (1989).
[CrossRef]

Choi, J.

Clubley, D.

DeBoo, B.

Faridi, M. S.

Fejer, M. M.

Filippov, O. K.

Glatt, I.

Gustafson, E. K.

Hennawi, J.

Johnson, M. A.

T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.

Kafri, O.

Kiikka, C.

T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.

Klein, C. A.

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36, 1586–1595 (1997).
[CrossRef]

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990).
[CrossRef]

Kothiyal, M. P.

Liu, C.

Lu, B.

Mansell, J. D.

Matesuda, K.

McCarville, T. J.

T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.

Meshcheryakov, V. I.

Montravadi, M. V.

Murata, K.

Nakano, Y.

Oreb, B. F.

Parham, T. G.

T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.

Patorski, K.

Perera, M.

Reitze, D. H.

Sasian, J.

Shakher, C.

Sheppard, C. J. R.

Shukla, R. P.

Sinel’nikov, M. I.

Singh, P.

Sirohi, R. S.

Soares, O. D. D.

Sriram, K. V.

Su, D. C.

D. C. Su and C. W. Chang, “A new technique for measuring the effective focal length of a thick or a compound lens,” Opt. Commun. 78, 118–122 (1990).
[CrossRef]

C. W. Chang and D. C. Su, “An improved technique of measuring the focal length of a lens,” Opt. Commun. 73, 257–262 (1989).
[CrossRef]

Suzuki, T.

Tan, F.

Wang, W.

Yokozeki, S.

Yoshida, S.

Appl. Opt. (12)

K. Patorski, S. Yokozeki, and T. Suzuki, “Collimation test by double grating shearing interferometer,” Appl. Opt. 15, 1234–1240 (1976).
[CrossRef]

Y. Nakano and K. Murata, “Talbot interferometry for measuring the focal length of a lens,” Appl. Opt. 24, 3162–3166 (1985).
[CrossRef]

J. Choi, M. Perera, M. D. Aggarwal, R. P. Shukla, and M. V. Montravadi, “Wedge plate shearing interferometers for collimation testing: use of a moiré technique,” Appl. Opt. 34, 3628–3638 (1995).
[CrossRef]

K. Matesuda, T. H. Barnes, B. F. Oreb, and C. J. R. Sheppard, “Focal-length measurement by multiple-beam shearing interferometry,” Appl. Opt. 38, 3542–3548 (1999).
[CrossRef]

L. M. Bernardo and O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry,” Appl. Opt. 27, 296–301 (1988).
[CrossRef]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack–Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
[CrossRef]

K. V. Sriram, M. P. Kothiyal, and R. S. Sirohi, “Talbot interferometry in noncollimated illumination for curvature and focal length measurements,” Appl. Opt. 31, 75–79 (1992).
[CrossRef]

B. DeBoo and J. Sasian, “Precise focal-length measurement technique with a reflective Fresnel-zone hologram,” Appl. Opt. 42, 3903–3909 (2003).
[CrossRef]

P. Singh, M. S. Faridi, C. Shakher, and R. S. Sirohi, “Measurement of focal length with phase-shifting Talbot interferometry,” Appl. Opt. 44, 1572–1576 (2005).
[CrossRef]

W. Wang, F. Tan, B. Lu, and C. Liu, “Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows,” Appl. Opt. 44, 7442–7450 (2005).
[CrossRef]

J. C. Bhattacharya and A. K. Aggarwal, “Measurement of the focal length of a collimating lens using the Talbot effect and the moiré technique,” Appl. Opt. 30, 4479–4480 (1991).
[CrossRef]

I. Glatt and O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry,” Appl. Opt. 26, 2507–2508 (1987).
[CrossRef]

J. Opt. Technol. (1)

Opt. Commun. (2)

C. W. Chang and D. C. Su, “An improved technique of measuring the focal length of a lens,” Opt. Commun. 73, 257–262 (1989).
[CrossRef]

D. C. Su and C. W. Chang, “A new technique for measuring the effective focal length of a thick or a compound lens,” Opt. Commun. 78, 118–122 (1990).
[CrossRef]

Opt. Eng. (2)

C. A. Klein, “Optical distortion coefficients of high-power laser windows,” Opt. Eng. 29, 343–350 (1990).
[CrossRef]

C. A. Klein, “Materials for high-power laser optics figures of merit for thermally induced beam distortions,” Opt. Eng. 36, 1586–1595 (1997).
[CrossRef]

Other (3)

R. Kingslake, ed., Applied Optics and Optical Engineering (Academic, 1965), Vol. 1, pp. 208–226.

T. G. Parham, T. J. McCarville, M. A. Johnson, and C. Kiikka, “Focal length measurements for the National Ignition Facility large lenses,” in Optical Fabrication and Testing 2002 (Optical Society of America, 2002), paper OWD8.

Melles Griot, Lasers and Instruments Guide: Theory and Uses of Shear Plate Collimation Testers (Melles Griot, 1994), pp. 135-12–135-13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

BSG principle.

Fig. 2.
Fig. 2.

Wedge shear focus position shifting measurement.

Fig. 3.
Fig. 3.

Spot matrix on the detector.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{WN,N=R12(N=1)WN,N=T14·R22(N=2)WN,N=T14·T24·R2(N2)·2(N>2),
{K1,1=W1,1WN,N=1(N=1)K1,N=W1,1WN,N=R12T14·T24·T2(N2)·2(N2).
{K2,2=W2,2WN,N=1(N=2)K2,N=W2,2WN,N=R22T24·R2(N2)·2(N>2).
R2=N3N1(N>3).
c=arcsin[sin(2·θ+arcsin(sin(a)n))·n].
Δl=2w[sec(b)+nsin(θ)tan(b)cos(c)sin(c)tan(b)(cos(θ)+sin(θ)tan(c))].
σΔl2=(Δlw)2·σw2+(Δla)2·σa2+(Δlθ)2·σθ2+(Δln)2·σn2.
{aa=ba=ca=cos(a)n2sin2(a)an=bn=cn=sin(a)nn2sin2(a)cθ=2bθ=2{ba=ncos(b)1(nsin(b))2babn=sin(b)ncos(b)bn1(nsin(b))2bθ=ncos(b)1(nsin(b))2{ca=ncos(c)1(nsin(c))2bacn=sin(c)+ncos(c)1(nsin(c))2bncθ=2ncos(c)1(nsin(c))2.
{Δlw=2[sec(b)+nsin(θ)tan(b)cos(c)sin(c)tan(b)(cos(θ)+sin(θ)tan(c))]Δla=Δlbba+Δlcca+ΔlccaΔlθ=Δlbbθ+Δlccθ+Δlccθ+ntan(b)cos(θ)cos(c)sin(c)tan(b)(cos(θ)tan(c)sin(θ))Δln=Δlbbn+Δlccn+Δlccn+sec(c)sin(θ)tan(b).

Metrics