Abstract

We propose that the transverse localization in a semiconductor-based disordered waveguide array can be made controllable in the terahertz (THz) regime by changing the ambient temperature. The standard scalar Helmholtz equation is used to describe THz wave propagation through the waveguide array. It is assumed that the waveguides are fabricated from the indium-antimonide (InSb) semiconductor, while the spacing between them is a dielectric. Disorder is introduced in the system by the random refractive index of the spacing medium. Our results demonstrate that the transverse width of the output intensity increases when increasing the temperature. This effect is attributed to the temperature-dependent electric permittivity of the used semiconductor. Then, the waveguides are composed of a dielectric and the spacing between them is filled with the InSb semiconductor. For this case, to introduce disorder, we assumed that the refractive indices of the waveguides are randomized. It is found that the output intensity becomes more localized with increasing temperature. However, further increasing the temperature leads to the delocalization of output intensity. The effect of spacing between adjacent waveguides on the threshold degree of disorder has also been investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
    [CrossRef]
  2. E. Abrahams, ed., 50 Years of Anderson Localization (World Scientific, 2010).
  3. A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
    [CrossRef]
  4. H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
    [CrossRef]
  5. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
    [CrossRef]
  6. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
    [CrossRef]
  7. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
    [CrossRef]
  8. H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
    [CrossRef]
  9. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
    [CrossRef]
  10. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
    [CrossRef]
  11. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
    [CrossRef]
  12. M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
    [CrossRef]
  13. L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, Felix Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express 19, 13636–13646 (2011).
    [CrossRef]
  14. S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
    [CrossRef]
  15. A. Szameit, Y. V. Kartashov, P. Zeil, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, V. A. Vysloukh, and L. Torner, “Wave localization at the boundary of disordered photonic lattices,” Opt. Lett. 35, 1172–1174 (2010).
    [CrossRef]
  16. S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
    [CrossRef]
  17. S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
    [CrossRef]
  18. Q. Chen and X. C. Zhang, “Semiconductor dynamic aperture for near-field terahertz wave imaging,” IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001).
    [CrossRef]
  19. Q. Chen, Z. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
    [CrossRef]
  20. T. Loffler, T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001).
    [CrossRef]
  21. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
    [CrossRef]
  22. Y. Kawano, “Quantum dots enable integrated terahertz imager,” Laser Focus World 45, 45–47 (2009).
  23. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
    [CrossRef]
  24. J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability,” Opt. Express 16, 14390–14396 (2008).
    [CrossRef]
  25. H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
    [CrossRef]
  26. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
    [CrossRef]
  27. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [CrossRef]
  28. A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
    [CrossRef]
  29. C. Liu, J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Opt. Commun. 283, 865–868 (2010).
    [CrossRef]
  30. X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
    [CrossRef]
  31. L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
    [CrossRef]

2013 (1)

A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
[CrossRef]

2012 (3)

M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
[CrossRef]

S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
[CrossRef]

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

2011 (4)

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, Felix Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express 19, 13636–13646 (2011).
[CrossRef]

2010 (2)

2009 (3)

Y. Kawano, “Quantum dots enable integrated terahertz imager,” Laser Focus World 45, 45–47 (2009).

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
[CrossRef]

2008 (5)

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability,” Opt. Express 16, 14390–14396 (2008).
[CrossRef]

2007 (2)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

2003 (1)

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef]

2002 (1)

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

2001 (2)

T. Loffler, T. Bauer, K. J. Siebert, H. G. Roskos, A. Fitzgerald, and S. Czasch, “Terahertz dark-field imaging of biomedical tissue,” Opt. Express 9, 616–621 (2001).
[CrossRef]

Q. Chen and X. C. Zhang, “Semiconductor dynamic aperture for near-field terahertz wave imaging,” IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001).
[CrossRef]

2000 (1)

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

1989 (1)

H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
[CrossRef]

1984 (1)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

1958 (1)

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Abouraddy, A. F.

Agrawal, G. P.

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

Anderson, P.

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Aspect, A.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Averitt, R. D.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Avidan, A.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Azad, A. K.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Bahrampour, A. R.

A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
[CrossRef]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Bauer, T.

Bernard, A.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Billy, J.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Bouyer, P.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

Chen, H. T.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Chen, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Chen, Q.

Q. Chen and X. C. Zhang, “Semiconductor dynamic aperture for near-field terahertz wave imaging,” IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001).
[CrossRef]

Q. Chen, Z. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
[CrossRef]

Christodoulides, D. N.

L. Martin, G. D. Giuseppe, A. Perez-Leija, R. Keil, Felix Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express 19, 13636–13646 (2011).
[CrossRef]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef]

Clement, D.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Czasch, S.

Dai, X.

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

de Raedt, H.

H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
[CrossRef]

de Vries, P.

H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
[CrossRef]

Dreisow, F.

Dreisow, Felix

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

Fitzgerald, A.

Ge, M. F.

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

Ghasempour Ardakani, A.

A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
[CrossRef]

Ghosh, S.

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

Giuseppe, G. D.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Hambrecht, B.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Han, J.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability,” Opt. Express 16, 14390–14396 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

He, H.

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Hefei, H.

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Heinrich, M.

Jiang, Z.

John, S.

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

Jordan, K.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

Josse, V.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Kartashov, Y. V.

Kawano, Y.

Y. Kawano, “Quantum dots enable integrated terahertz imager,” Laser Focus World 45, 45–47 (2009).

Keil, R.

Lagendijk, A.

A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
[CrossRef]

Lahini, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Lakhtakia, A.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability,” Opt. Express 16, 14390–14396 (2008).
[CrossRef]

Lazarides, N.

M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
[CrossRef]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef]

Liu, C.

C. Liu, J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Opt. Commun. 283, 865–868 (2010).
[CrossRef]

Loffler, T.

Lugan, P.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Mahdavi, S. M.

A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
[CrossRef]

Martin, L.

Martin, M. C.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

McKinney, W. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

Molina, M. I.

M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
[CrossRef]

Morandotti, R.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Neil, G. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

Nolte, S.

O’hara, J. F.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Padilla, W. J.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Page, J. M.

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Pal, B. P.

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

Perez-Leija, A.

Pozzi, F.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Qiu, C. W.

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Roskos, H. G.

Saleh, B. E. A.

Sanchez-Palencia, L.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Siebert, K. J.

Silberberg, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef]

Skipetrov, S. E.

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Sorel, M.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Strybulevych, A.

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Szameit, A.

Taylor, A. J.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Tong, S. R.

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

Torner, L.

Tsironis, G. P.

M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
[CrossRef]

Tünnermann, A.

Van Tiggelen, B. A.

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Van Tigglen, B.

A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
[CrossRef]

Varshney, R. K.

S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
[CrossRef]

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

Vysloukh, V. A.

Wang, W. G.

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

Wen, S.

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Wiersma, D. S.

A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

Williams, G. P.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

Wu, L. Y.

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

Xiang, Y.

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

Xu, G. X.

Xu, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Ye, J.

C. Liu, J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Opt. Commun. 283, 865–868 (2010).
[CrossRef]

Zeil, P.

Zhang, W.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Zhang, X. C.

Q. Chen and X. C. Zhang, “Semiconductor dynamic aperture for near-field terahertz wave imaging,” IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001).
[CrossRef]

Q. Chen, Z. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
[CrossRef]

Zhang, X.-C.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Zhang, Y.

C. Liu, J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Opt. Commun. 283, 865–868 (2010).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Zuo, Z.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

Atmos. Chem. Phys. (1)

L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, “Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate,” Atmos. Chem. Phys. 11, 6593–6605 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Chen and X. C. Zhang, “Semiconductor dynamic aperture for near-field terahertz wave imaging,” IEEE J. Sel. Top. Quantum Electron. 7, 608–614 (2001).
[CrossRef]

J. Appl. Phys. (1)

X. Dai, Y. Xiang, S. Wen, and H. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys. 109, 053104 (2011).
[CrossRef]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56, 554–557 (2009).
[CrossRef]

J. Opt. (1)

S. Ghosh, B. P. Pal, R. K. Varshney, and G. P. Agrawal, “Transverse localization of light and its dependence on the phase front curvature of the input beam in a disordered optical waveguide lattice,” J. Opt. 14, 075701 (2012).
[CrossRef]

Laser Focus World (1)

Y. Kawano, “Quantum dots enable integrated terahertz imager,” Laser Focus World 45, 45–47 (2009).

Nat. Photonics (1)

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[CrossRef]

Nat. Phys. (1)

H. Hefei, A. Strybulevych, J. M. Page, S. E. Skipetrov, and B. A. Van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4, 945–948 (2008).
[CrossRef]

Nature (6)

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003).
[CrossRef]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two dimensional photonic lattices,” Nature 446, 52–55 (2007).
[CrossRef]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef]

Opt. Commun. (3)

C. Liu, J. Ye, and Y. Zhang, “Thermally tunable THz filter made of semiconductors,” Opt. Commun. 283, 865–868 (2010).
[CrossRef]

S. Ghosh, G. P. Agrawal, B. P. Pal, and R. K. Varshney, “Localization of light in evanescently coupled disordered waveguide lattices: dependence on the input beam profile,” Opt. Commun. 284, 201–206 (2011).
[CrossRef]

S. Ghosh, B. P. Pal, and R. K. Varshney, “Role of optical nonlinearity on transverse localization of light in a disordered one-dimensional optical waveguide lattice,” Opt. Commun. 285, 2785–2789 (2012).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

A. Ghasempour Ardakani, S. M. Mahdavi, and A. R. Bahrampour, “Tuning of random lasers by means of external magnetic fields based on the Voigt effect,” Opt. Laser Technol. 47, 121–126 (2013).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

P. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
[CrossRef]

Phys. Rev. E (1)

M. I. Molina, N. Lazarides, and G. P. Tsironis, “Optical surface modes in the presence of nonlinearity and disorder,” Phys. Rev. E 85, 017601 (2012).
[CrossRef]

Phys. Rev. Lett. (4)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
[CrossRef]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

H. de Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Phys. Today (1)

A. Lagendijk, B. Van Tigglen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62, 24–29 (2009).
[CrossRef]

Other (1)

E. Abrahams, ed., 50 Years of Anderson Localization (World Scientific, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the 1D array of waveguides with equal width and spacing between them.

Fig. 2.
Fig. 2.

Numerical simulation of the THz electromagnetic wave propagation when the wave is injected into the central waveguide for different strength of disorder: (a) c=0, (b) c=0.01, (c) c=0.03, and (d) c=0.1.

Fig. 3.
Fig. 3.

Output intensity as function of the transverse distance of the waveguide array for different temperatures.

Fig. 4.
Fig. 4.

Refractive index of InSb as a function of temperature for λ=50μm.

Fig. 5.
Fig. 5.

Output intensity versus transverse length corresponding to Ls=λ/2 and Ls=λ/3 for c=0.03.

Fig. 6.
Fig. 6.

Output intensity versus transverse length at different temperatures (T=370 and 385 K), which are calculated at different disorder levels (c=0, 0.03).

Fig. 7.
Fig. 7.

Output intensity versus transverse length calculated at different temperatures.

Fig. 8.
Fig. 8.

Output intensity versus transverse length calculated at different temperatures.

Fig. 9.
Fig. 9.

Numerical simulation of the THz electromagnetic wave propagation when the wave is injected into the central waveguide for different temperatures: (a) T=397K, (b) T=398.5K, (c) T=399K, and (d) T=399.05K.

Fig. 10.
Fig. 10.

Numerical simulation of the THz electromagnetic wave propagation when the wave is injected into the central waveguide at T=399.05K for a high disorder level c=1.

Fig. 11.
Fig. 11.

Numerical simulation of the THz electromagnetic wave propagation when the wave is injected into the central waveguide at T=313.81K for disorder level c=0.03 and λ=100μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δn(x)=Δnp(H(x)+cδ(x)),
iAz+12k(2Ax2)+kn0Δn(x)A=0,
εs=εωp2ω2+iγ,
N=5.76×1020T3/2exp(0.26/2kBT),

Metrics