Abstract

To keep pace with the shrinkage of critical dimension, source and mask optimization (SMO) has emerged as a promising resolution enhancement technique to push the resolution of 193 nm argon fluoride immersion lithography systems. However, most current pixelated SMO approaches relied on scalar imaging models that are no longer accurate for immersion lithography systems with hyper-NA (NA>1). This paper develops a robust hybrid SMO (HSMO) algorithm based on a vector imaging model capable of effectively improving the robustness of immersion lithography systems to defocus and dose variations. The proposed HSMO algorithm includes two steps. First, the individual source optimization approach is carried out to rapidly reduce the cost function. Subsequently, the simultaneous SMO approach is applied to further improve the process robustness by exploiting the synergy in the joint optimization of source and mask patterns. The conjugate gradient method is used to update the source and mask pixels. In addition, a source regularization approach and source postprocessing are both used to improve the manufacturability of the optimized source patterns. Compared to the mask optimization method, the HSMO algorithm achieves larger process windows, i.e., extends the depth of focus and exposure latitude, thus more effectively improving the process robustness of 45 nm immersion lithography systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed. (Publishing House of Electronics Industry, 2003).
  2. F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
    [CrossRef]
  3. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  4. X. Ma and G. R. Arce, Computational Lithography, Wiley Series in Pure and Applied Optics (Wiley, 2010).
  5. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
    [CrossRef]
  6. C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
    [CrossRef]
  7. S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
    [CrossRef]
  8. S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
    [CrossRef]
  9. Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
    [CrossRef]
  10. J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
    [CrossRef]
  11. X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).
    [CrossRef]
  12. J. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 797320 (2011).
    [CrossRef]
  13. Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.
  14. Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
    [CrossRef]
  15. N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010).
  16. N. Jia and E. Y. Lam, “Robustness enhancement in optical lithography: from pixelated mask optimization to pixelated source-mask optimization,” ECS Trans. 34, 203–208 (2011).
    [CrossRef]
  17. N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).
    [CrossRef]
  18. G. M. Gallatin, “High-numerical-aperture scalar imaging,” Appl. Opt. 40, 4958–4964 (2001).
    [CrossRef]
  19. X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30, 112–123 (2013).
    [CrossRef]
  20. D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
    [CrossRef]
  21. J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
    [CrossRef]
  22. T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
    [CrossRef]
  23. A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
    [CrossRef]
  24. X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).
    [CrossRef]
  25. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  26. X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).
    [CrossRef]
  27. K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).
  28. X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11, 043008 (2012).
    [CrossRef]
  29. X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).
    [CrossRef]
  30. X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).
    [CrossRef]
  31. http://www.mentor.com/ .
  32. T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
    [CrossRef]
  33. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Science, 1996).
  34. M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
    [CrossRef]

2013 (1)

2012 (2)

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).
[CrossRef]

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11, 043008 (2012).
[CrossRef]

2011 (5)

J. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 797320 (2011).
[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Robustness enhancement in optical lithography: from pixelated mask optimization to pixelated source-mask optimization,” ECS Trans. 34, 203–208 (2011).
[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).
[CrossRef]

2010 (3)

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

2009 (3)

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).
[CrossRef]

2008 (3)

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).
[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

2007 (1)

2006 (1)

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
[CrossRef]

2005 (3)

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

2004 (1)

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

2002 (1)

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

2001 (1)

2000 (1)

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Arce, G. R.

Aschke, L.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Bagheri, S.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Bizjak, T.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Bukofsky, S.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Burkhardt, M.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Burr, G.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Callan, N.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Campbell, S. A.

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed. (Publishing House of Electronics Industry, 2003).

Carpaij, R.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Carriere, J. T.

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

Chen, L.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Conley, W.

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

Corliss, D.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Dam, T.

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

David, L.

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[CrossRef]

Dittmann, O.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Dong, L.

Engelen, A.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Fakhry, M.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Faure, T.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Flagello, D.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Fonseca, C.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Gallagher, E.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Gallatin, G. M.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Göhnermeier, A.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Science, 1996).

Graüpner, P.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Groenendijk, R.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Gronlund, K.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Guo, X.

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11, 043008 (2012).
[CrossRef]

Hageman, J.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Halle, S.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Ham, Y.

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

Han, C.

Hansen, S.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Haraguchi, T.

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

Hartung, F.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Heil, T.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Hennerkes, C.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Hibbs, M.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Himel, M. D.

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

Hoffnagle, J.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Hsu, S.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Hu, P.

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Imgrunt, W.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Jeong, J.

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

Jia, N.

N. Jia and E. Y. Lam, “Robustness enhancement in optical lithography: from pixelated mask optimization to pixelated source-mask optimization,” ECS Trans. 34, 203–208 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010).

Kachalov, D. G.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Kamenov, V.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Kathman, A. D.

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

Kazinczi, R.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Kim, Y.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Kneer, B.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Kojima, Y.

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

Kong, D.

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

Krähmer, D.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Lai, K.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Lam, E. Y.

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Robustness enhancement in optical lithography: from pixelated mask optimization to pixelated source-mask optimization,” ECS Trans. 34, 203–208 (2011).
[CrossRef]

N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010).

Li, Y.

Li, Z.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Lissotschenko, V. N.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Liu, H.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Ma, X.

Maul, M.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

McIntyre, G.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Melville, D.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Miklyaev, Y. V.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Milanfar, P.

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
[CrossRef]

Molless, A.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Moon, J.

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

Nam, B.

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

Neureuther, A. R.

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
[CrossRef]

Park, S.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Pavelyev, V. S.

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

Peng, D.

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Peng, Y.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.

Pistor, T. V.

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
[CrossRef]

Poonawala, A.

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
[CrossRef]

Progler, C.

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

Robert, S.

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[CrossRef]

Rohmund, F.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Rosenbluth, A. E.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Ruoff, J.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Schellenberg, F.

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

Shi, X.

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[CrossRef]

Singh, R. N.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

Socha, B.

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

Socha, R.

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Socha, R. J.

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
[CrossRef]

Stack, J.

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

Tanaka, T.

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

Tian, K.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Tirapu-Azpiroz, J.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Tolani, V.

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

Totzeck, M.

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

Wagner, A.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Wang, Y.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.

Wong, A. K.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Yamana, M.

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

Yamazaki, T.

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

Yim, D. G.

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

Yu, J.

J. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 797320 (2011).
[CrossRef]

Yu, P.

J. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 797320 (2011).
[CrossRef]

Yu, Z.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.

Zhang, J.

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.

Zimmerman, J.

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

Appl. Opt. (1)

ECS Trans. (1)

N. Jia and E. Y. Lam, “Robustness enhancement in optical lithography: from pixelated mask optimization to pixelated source-mask optimization,” ECS Trans. 34, 203–208 (2011).
[CrossRef]

IEEE Trans. Image Process. (1)

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11, 043008 (2012).
[CrossRef]

J. Microlithogr. Microfabr. Microsyst. (2)

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlithogr. Microfabr. Microsyst. 4, 031108 (2005).
[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr. Microfabr. Microsyst. 1, 13–30 (2002).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (4)

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Proc. SPIE (13)

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. Tirapu-Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmerman, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, and J. Hageman, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).
[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).
[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).
[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).
[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 764024 (2010).
[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in DOE modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 764025 (2010).
[CrossRef]

J. Yu and P. Yu, “Gradient-based fast source mask optimization (SMO),” Proc. SPIE 7973, 797320 (2011).
[CrossRef]

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).
[CrossRef]

J. Moon, B. Nam, J. Jeong, D. Kong, B. Nam, and D. G. Yim, “Binary and attenuated PSM mask evaluation for sub 50 nm device development perspective,” Proc. SPIE 6924, 692436 (2008).
[CrossRef]

T. Yamazaki, Y. Kojima, M. Yamana, T. Haraguchi, and T. Tanaka, “Fine pattern fabrication property of binary mask and attenuated phase shift mask,” Proc. SPIE 7379, 73791V (2009).
[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).
[CrossRef]

Other (7)

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

X. Ma and G. R. Arce, Computational Lithography, Wiley Series in Pure and Applied Optics (Wiley, 2010).

N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010).

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “High performance source optimization using a gradient-based method in optical lithography,” IEEE 11th International Symposium on Quality Electronic Design (IEEE, 2010), pp. 108–113.

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Science, 1996).

S. A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed. (Publishing House of Electronics Industry, 2003).

http://www.mentor.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Immersion lithography system with partially coherent illuminations.

Fig. 2.
Fig. 2.

Relationship between the dose variations and the cross sections of aerial images. (a) The cross sections of aerial images with gradual transitions and (b) the cross sections of ideal aerial images similar to the target pattern.

Fig. 3.
Fig. 3.

Flowcharts of (a) the proposed HSMO algorithm and (b) the SPM.

Fig. 4.
Fig. 4.

Simulations of the AttPSM optimizations for the semi-dense line-space pattern and contact holes. (a) The target pattern of the semi-dense line-space pattern, (b) the optimized AttPSM using the proposed algorithm for the semi-dense line-space pattern, (c) the periodically extended AttPSM pattern by Prolith for the semi-dense line-space pattern, (d) the target pattern of the dense contact holes, (e) the optimized AttPSM using the proposed algorithm for the dense contact holes, and (f) the periodically extended AttPSM pattern by Prolith for the dense contact holes. White, gray, and black represent 1, 0, and 0.245, respectively.

Fig. 5.
Fig. 5.

Simulation comparison among the initial source and mask, mask optimization results, and HSMO results. Top to bottom: the simulations for isolate line-space pattern, semi-dense line-space pattern, and contact holes. From left to right: the initial source patterns, the central portions of the initial masks, the central portions of the optimized masks obtained from the mask optimization algorithm, the optimized sources, and the central portions of the optimized masks obtained from the proposed HSMO algorithm. For the source patterns, the colors tones from blue to red represent an intensity range of [0, 1]. For the mask patterns, the white and black represent the clear openings and 180° shifters with 6% transmissivity.

Fig. 6.
Fig. 6.

Convergence curves of the proposed HSMO algorithm for (a) the isolate line-space pattern, (b) the semi-dense line-space pattern, and (c) the contact holes.

Fig. 7.
Fig. 7.

PW comparison among the initial source and mask, the mask optimization algorithm, and the proposed HSMO algorithm followed by SPM for (a) the isolate line-space pattern, (b) the semi-dense line-space pattern, and (c) the contact holes.

Fig. 8.
Fig. 8.

Print images of the contact holes calculated by Calibre corresponding to (a) the initial source and mask, (b) the mask optimization algorithm, and (c) the proposed HSMO algorithm followed by SPM. The black, white, blue shaded, and gray areas represent the opaque areas on the mask, the clear openings on the mask, the printed image on the focal plane, and the printed image with 50 nm defocus, respectively.

Fig. 9.
Fig. 9.

Imaging formation based on the vector model.

Tables (4)

Tables Icon

Table 1. System Parameters and Optimization Parameters of the Simulations for All Kinds of Target Patterns

Tables Icon

Table 2. Values of DOF (nm) Corresponding to EL=3%, 5%, and 8% and the Runtimes of Different Simulationsa

Tables Icon

Table 3. Pattern Errors of the Printed Images in Fig. 8

Tables Icon

Table 4. List of Acronyms

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

I=1Jsumxsys(J(xs,ys)p=x,y,zHpxsys(BxsysM)22),
F=aI˜I22,
D=ωdefFnom+(1ωdef)Foff,
(J^,M^)=argminJRNs×Ns,MRN×ND.
J=f(ΩS)=0.5(1+cosΩS);M=g(ΩM)=0.6225(1+cosΩ)0.245,
F(ΩS)=ωdefFnom(ΩS)+(1ωdef)Foff(ΩS),
F(ΩM)=ωdefFnom(ΩM)+(1ωdef)Foff(ΩM),
FfocΩS(xs,ys)=2Jsumf(ΩS(xs,ys))×1N×1T[(p=x,y,zEpwafer(xs,ys)22)(aI˜Ifoc)]1N×1,
Ffoc(ΩM)=4Jsumg(ΩM)xsys[J(xs,ys)p=x,y,zReal((Bxsys)*{(Hp,focxsys)*[Epwafer(xs,ys)(aI˜Ifoc)]})].
Epwafer(xs,ys)=F1{2πnwRVpxsysF(BxsysM)}.
F(ΩM)=4Jsumg(ΩM)xsysJ(xs,ys)p=x,y,zReal[(Bxsys)*F1{2πnwRVpxsys*CF[Epwafer(xs,ys)(aI˜Ifoc)]}],
RS=xsyssig{J(xs,ys)},
RS(ΩS)=aS2sig{J}(1sig{J})sinΩS.
[ExEyEz]=T[EE],
T=[βραγραρβγρ0ρ],
E⃗i=TE⃗i.
E=EiBM,
B(m,n)=exp(j2πmysNAm×pixelλ)exp(j2πnxsNAm×pixelλ),m,n=1,2,,N,
Ewafer(xs,ys)=2πnwR×(F1{V}(BM)),
V=γγ×exp[jkδ(1γ)]×VUEi.
V(m,n)=[β2+α2γ1γ2αβ1+γαβ1+γβ2+α2γ1γ2αβ],m,n=1,2,,N,
U={1f2+g2NAmλ0elsewhere.
Epwafer(xs,ys)=Hp(BM),p=x,y,z,
Hp=2πnwRF1{Vp},p=x,y,z,
I(xs,ys)=1JsumJ(xs,ys)p=x,y,zHp(BM)22,
I=1Jsumxsys(J(xs,ys)p=x,y,zHpxsys(BxsysM)22).

Metrics