Abstract

This research focuses on analyzing the frequency characteristics of ultrasonic waves induced by a partially closed surface-breaking crack. When acoustic waves interact with the crack, transmission, reflection, and mode conversions occur and the frequency characteristics of signals perform obvious changes. A pulsed laser line source is used to generate ultrasonic waves in the sample with a partially closed surface-breaking crack, and one can see how the frequency characteristics of detected signals change as the pulsed laser beam scans across the sample surface. The optical deflection beam method is developed to detect the ultrasonic signals experimentally. The fast Fourier transform (FFT) is used to analyze the time-domain data, and the FFT data are visualized by a B-scan plot. A clear disruption in the B-scan can be observed when the laser beam illuminates directly onto the crack, which is due to the changes of frequency characteristics induced by the partially closed crack. A frequency-domain B-scan of numerical simulation results is presented, and the clear disruption can also be observed clearly.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Rastogi and E. Denarie, “Visualization of in-plane displacement fields by using phase-shifting holographic moiré: application to crack detection and propagation,” Appl. Opt. 31, 2402–2404 (1992).
    [CrossRef]
  2. J. R. Bernstein and J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107, 1352–1357 (2000).
    [CrossRef]
  3. S. P. Trivedi, S. Prakash, S. Rana, and O. Sasaki, “Real-time slope mapping and defect detection in bent plates using Talbot interferometry,” Appl. Opt. 49, 897–903 (2010).
    [CrossRef]
  4. C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
    [CrossRef]
  5. J. Li, L. Dong, C. Ni, Z. Shen, and H. Zhang, “Application of ultrasonic surface waves in the detection of microcracks using the scanning heating laser source technique,” Chin. Opt. Lett. 10, 111403 (2012).
    [CrossRef]
  6. A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
    [CrossRef]
  7. S. Mezil, N. Chigarev, V. Tournat, and V. Gusev, “All-optical probing of the nonlinear acoustics of a crack,” Opt. Lett. 36, 3449–3451 (2011).
    [CrossRef]
  8. T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
    [CrossRef]
  9. J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
    [CrossRef]
  10. I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).
  11. A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
    [CrossRef]
  12. Z. Yan and P. Nagy, “Enhanced laser generation of surface acoustic waves by discontinuities,” AIP Conf. Proc. 557, 204–211 (2001).
    [CrossRef]
  13. S. Boonsang and R. Dewhurst, “Enhancement of laser-ultrasound/electromagnetic-acoustic transducer signals from Rayleigh wave interaction at surface features,” Appl. Phys. Lett. 82, 3348–3350 (2003).
    [CrossRef]
  14. R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
    [CrossRef]
  15. S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
    [CrossRef]
  16. S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
    [CrossRef]
  17. Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172–181 (2004).
    [CrossRef]
  18. C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
    [CrossRef]
  19. R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012).
    [CrossRef]

2012 (3)

2011 (2)

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

S. Mezil, N. Chigarev, V. Tournat, and V. Gusev, “All-optical probing of the nonlinear acoustics of a crack,” Opt. Lett. 36, 3449–3451 (2011).
[CrossRef]

2010 (2)

S. P. Trivedi, S. Prakash, S. Rana, and O. Sasaki, “Real-time slope mapping and defect detection in bent plates using Talbot interferometry,” Appl. Opt. 49, 897–903 (2010).
[CrossRef]

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

2008 (4)

T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
[CrossRef]

A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
[CrossRef]

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

2006 (1)

R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
[CrossRef]

2004 (1)

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172–181 (2004).
[CrossRef]

2003 (1)

S. Boonsang and R. Dewhurst, “Enhancement of laser-ultrasound/electromagnetic-acoustic transducer signals from Rayleigh wave interaction at surface features,” Appl. Phys. Lett. 82, 3348–3350 (2003).
[CrossRef]

2001 (1)

Z. Yan and P. Nagy, “Enhanced laser generation of surface acoustic waves by discontinuities,” AIP Conf. Proc. 557, 204–211 (2001).
[CrossRef]

2000 (2)

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

J. R. Bernstein and J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107, 1352–1357 (2000).
[CrossRef]

1992 (1)

1986 (1)

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Achenbach, J. D.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

An, R. R.

Bernstein, J. R.

J. R. Bernstein and J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107, 1352–1357 (2000).
[CrossRef]

Boonsang, S.

S. Boonsang and R. Dewhurst, “Enhancement of laser-ultrasound/electromagnetic-acoustic transducer signals from Rayleigh wave interaction at surface features,” Appl. Phys. Lett. 82, 3348–3350 (2003).
[CrossRef]

Burrows, S. E.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Cann, B.

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

Carroll, D. L.

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

Chigarev, N.

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

S. Mezil, N. Chigarev, V. Tournat, and V. Gusev, “All-optical probing of the nonlinear acoustics of a crack,” Opt. Lett. 36, 3449–3451 (2011).
[CrossRef]

Choi, I.

T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
[CrossRef]

Cooper, J. A.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Crosbie, R. A.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Delorme, N.

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

Denarie, E.

Dewhurst, R.

S. Boonsang and R. Dewhurst, “Enhancement of laser-ultrasound/electromagnetic-acoustic transducer signals from Rayleigh wave interaction at surface features,” Appl. Phys. Lett. 82, 3348–3350 (2003).
[CrossRef]

Dewhurst, R. J.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Dixon, S.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
[CrossRef]

Dong, L.

Dutton, B.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Edwards, R.

R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
[CrossRef]

Edwards, R. S.

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

Fan, Y.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

Fomitchov, P. A.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

Gusev, V.

Gusev, V. E.

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

Heo, U.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Hess, P.

A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
[CrossRef]

Hsu, D. K.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Im, K.-H.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Jhang, K.

T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
[CrossRef]

Jian, X.

R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
[CrossRef]

Kim, H.-J.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Krishnaswamy, S.

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172–181 (2004).
[CrossRef]

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

Kromine, A. K.

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

Lee, T.

T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
[CrossRef]

Li, J.

Lomonosov, A. M.

A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
[CrossRef]

Lu, J.

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

Luo, X. S.

McKie, A. D.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Mezil, S.

Moura, A.

A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
[CrossRef]

Nagy, P.

Z. Yan and P. Nagy, “Enhanced laser generation of surface acoustic waves by discontinuities,” AIP Conf. Proc. 557, 204–211 (2001).
[CrossRef]

Ni, C.

J. Li, L. Dong, C. Ni, Z. Shen, and H. Zhang, “Application of ultrasonic surface waves in the detection of microcracks using the scanning heating laser source technique,” Chin. Opt. Lett. 10, 111403 (2012).
[CrossRef]

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

Ni, C. Y.

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

Palmer, S. B.

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

Park, J.-W.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Prakash, S.

Rana, S.

Rastogi, P. K.

Sasaki, O.

Shen, Z.

J. Li, L. Dong, C. Ni, Z. Shen, and H. Zhang, “Application of ultrasonic surface waves in the detection of microcracks using the scanning heating laser source technique,” Chin. Opt. Lett. 10, 111403 (2012).
[CrossRef]

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

Shen, Z. H.

R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012).
[CrossRef]

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

Shi, Y.

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

Sohn, Y.

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172–181 (2004).
[CrossRef]

Song, S.-J.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Spicer, J. B.

J. R. Bernstein and J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107, 1352–1357 (2000).
[CrossRef]

Tournat, V.

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

S. Mezil, N. Chigarev, V. Tournat, and V. Gusev, “All-optical probing of the nonlinear acoustics of a crack,” Opt. Lett. 36, 3449–3451 (2011).
[CrossRef]

Trivedi, S. P.

Yan, Z.

Z. Yan and P. Nagy, “Enhanced laser generation of surface acoustic waves by discontinuities,” AIP Conf. Proc. 557, 204–211 (2001).
[CrossRef]

Yang, I.-Y.

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Zhang, H.

AIP Conf. Proc. (1)

Z. Yan and P. Nagy, “Enhanced laser generation of surface acoustic waves by discontinuities,” AIP Conf. Proc. 557, 204–211 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Boonsang and R. Dewhurst, “Enhancement of laser-ultrasound/electromagnetic-acoustic transducer signals from Rayleigh wave interaction at surface features,” Appl. Phys. Lett. 82, 3348–3350 (2003).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. (1)

J. A. Cooper, R. A. Crosbie, R. J. Dewhurst, A. D. McKie, and S. B. Palmer, “Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 33, 462–470 (1986).
[CrossRef]

J. Acoust. Soc. Am. (3)

J. R. Bernstein and J. B. Spicer, “Line source representation for laser-generated ultrasound in aluminum,” J. Acoust. Soc. Am. 107, 1352–1357 (2000).
[CrossRef]

Y. Sohn and S. Krishnaswamy, “Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw,” J. Acoust. Soc. Am. 115, 172–181 (2004).
[CrossRef]

C. Y. Ni, N. Chigarev, V. Tournat, N. Delorme, Z. H. Shen, and V. E. Gusev, “Probing of laser-induced crack modulation by laser-monitored surface waves and surface skimming bulk waves,” J. Acoust. Soc. Am. 131, EL250–EL255 (2012).
[CrossRef]

J. Appl. Phys. (1)

A. Moura, A. M. Lomonosov, and P. Hess, “Depth evaluation of surface-breaking cracks using laser-generated transmitted Rayleigh waves,” J. Appl. Phys. 103, 084911 (2008).
[CrossRef]

J. Mater. Sci. Technol. (1)

I.-Y. Yang, K.-H. Im, U. Heo, D. K. Hsu, J.-W. Park, H.-J. Kim, and S.-J. Song, “Ultrasonic approach of Rayleigh pitch-catch contact ultrasound waves on CFRP laminated composites,” J. Mater. Sci. Technol. 24, 407–409 (2008).

Jpn. J. Appl. Phys. (1)

C. Ni, Y. Shi, Z. Shen, and J. Lu, “Study of dual-laser-generated surface acoustic waves interacting with multiangled surface breaking cracks by finite element method,” Jpn. J. Appl. Phys. 49, 046603 (2010).
[CrossRef]

NDT&E International (1)

T. Lee, I. Choi, and K. Jhang, “Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection,” NDT&E International 41, 632–637 (2008).
[CrossRef]

Nondestr. Test. Eval. (1)

S. Dixon, B. Cann, D. L. Carroll, Y. Fan, and R. S. Edwards, “Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks,” Nondestr. Test. Eval. 23, 25–34 (2008).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

A. K. Kromine, P. A. Fomitchov, S. Krishnaswamy, and J. D. Achenbach, “Applications of scanning laser source technique for detection of surface-breaking defects,” Proc. SPIE 4076, 252–259 (2000).
[CrossRef]

Ultrasonics (2)

R. Edwards, S. Dixon, and X. Jian, “Depth gauging of defects using low frequency wideband Rayleigh waves,” Ultrasonics 44, 93–98 (2006).
[CrossRef]

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup used for noncontact detection of cracks in glass sheet.

Fig. 2.
Fig. 2.

Schematic diagram of specimen with surface-breaking crack.

Fig. 3.
Fig. 3.

Received signals: (a) transmission configuration and (b) reflection configuration.

Fig. 4.
Fig. 4.

FFTs of various parts of the waveform obtained from (a) the transmission configuration and (b) the reflection configuration.

Fig. 5.
Fig. 5.

Time-domain and frequency-domain results corresponding to five different pump positions.

Fig. 6.
Fig. 6.

B-scans of the time-domain and frequency-domain data detected from the glass sheet with partially closed crack.

Fig. 7.
Fig. 7.

B-scan of the frequency-domain data detected from the glass sheet with open crack.

Fig. 8.
Fig. 8.

B-scan of the frequency-domain data detected from numerical simulation.

Fig. 9.
Fig. 9.

B-scans of the time-domain and frequency-domain data detected from an intact glass sheet.

Metrics