Abstract

Subtraction, division, and balanced ratiometric detection (BRD) are three extensively used demodulation methods for dual-beam wavelength-modulation trace gas detection. However, reliability comparisons among these methods under changing environmental conditions were rarely researched. In this paper, the influences of ambient temperature and bend loss of fibers are analyzed in detail, and the reliabilities of the subtraction, division, and BRD methods are quantitatively compared for the first time to our knowledge. When the ambient temperature is increased by 1°C, the deviation of the division method is only 0.29%, which obviously outperforms the subtraction method (2.90%) and the BRD method (0.55%). Furthermore, a concept, “power fluctuation rejection ratio,” is introduced to compare the suppression effects of the subtraction, division, and BRD methods on the laser light source power fluctuation. The study results demonstrate that the division method provides better reliability when the ambient temperature or bending loss is varied. The validity and reliability are fully verified by the fact that the experimental results give good agreement with the theoretical simulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
    [CrossRef]
  2. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
    [CrossRef]
  3. R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.
  4. Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
    [CrossRef]
  5. R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
    [CrossRef]
  6. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef]
  7. Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.
  8. S. Okamura and M. Maruyama, “Improvement on the sensitivity of electro-optical system for electric field strength measurements,” Trans. Inst. Electron. Commun. Eng. Jpn. E 65, 702 (1982).
  9. P. C. D. Hobbs, “Shot noise optical measurement at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
    [CrossRef]
  10. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
    [CrossRef]
  11. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
    [CrossRef]
  12. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3248 (1995).
    [CrossRef]
  13. R. G. Lamont, D. C. Johnson, and K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1985).
    [CrossRef]
  14. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
    [CrossRef]
  15. Q. Jianxin and H. Feng, “Study on angle deviation for coupling loss in fiber collimator packaging,” in 6th International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 1–4.
  16. Q. Jianxin and H. Feng, “Study on pitch deviation for coupling loss in fiber collimator packing,” in 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 1–5.
  17. Q. Wang, J. Chang, C. Zhu, and Y. Liu, “High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller,” Appl. Opt. 52, 1094–1099 (2013).
  18. X. Mengchi, “Research and measurement of optical fibre macrobend loss,” Telecommun. Sci. 25, 57–62 (2009).

2013 (1)

2012 (2)

W. Zhang, D. J. Webb, and G.-D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30, 1090–1096 (2012).
[CrossRef]

Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
[CrossRef]

2009 (1)

X. Mengchi, “Research and measurement of optical fibre macrobend loss,” Telecommun. Sci. 25, 57–62 (2009).

2008 (1)

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

2005 (1)

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

2003 (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

2001 (1)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

1995 (1)

1992 (1)

1991 (1)

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

1990 (1)

P. C. D. Hobbs, “Shot noise optical measurement at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

1985 (1)

1982 (1)

S. Okamura and M. Maruyama, “Improvement on the sensitivity of electro-optical system for electric field strength measurements,” Trans. Inst. Electron. Commun. Eng. Jpn. E 65, 702 (1982).

Allen, M. G.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3248 (1995).
[CrossRef]

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Bomse, D. S.

Carleton, K. L.

Chang, J.

Q. Wang, J. Chang, C. Zhu, and Y. Liu, “High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller,” Appl. Opt. 52, 1094–1099 (2013).

Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
[CrossRef]

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

Davis, S. J.

Ebert, V.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Feng, H.

Q. Jianxin and H. Feng, “Study on pitch deviation for coupling loss in fiber collimator packing,” in 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 1–5.

Q. Jianxin and H. Feng, “Study on angle deviation for coupling loss in fiber collimator packaging,” in 6th International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 1–4.

Fischer, H.

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Frish, M. B.

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Green, B. D.

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Haller, K. L.

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

Hill, K. O.

Hobbs, P. C. D.

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

P. C. D. Hobbs, “Shot noise optical measurement at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

Hunsmann, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Jianxin, Q.

Q. Jianxin and H. Feng, “Study on pitch deviation for coupling loss in fiber collimator packing,” in 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 1–5.

Q. Jianxin and H. Feng, “Study on angle deviation for coupling loss in fiber collimator packaging,” in 6th International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 1–4.

Johnson, D. C.

Kessler, W. J.

Kim, I. I.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Konigstedt, R.

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Korevaar, E. J.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Kormann, R.

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Laderer, M. C.

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Lamont, R. G.

Lelieveld, J.

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Liu, Y.

Maruyama, M.

S. Okamura and M. Maruyama, “Improvement on the sensitivity of electro-optical system for electric field strength measurements,” Trans. Inst. Electron. Commun. Eng. Jpn. E 65, 702 (1982).

McArthur, B.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Mengchi, X.

X. Mengchi, “Research and measurement of optical fibre macrobend loss,” Telecommun. Sci. 25, 57–62 (2009).

Okamura, S.

S. Okamura and M. Maruyama, “Improvement on the sensitivity of electro-optical system for electric field strength measurements,” Trans. Inst. Electron. Commun. Eng. Jpn. E 65, 702 (1982).

Otis, C. E.

Palombo, D. A.

Parchatka, U.

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Peng, G.-D.

Rascher, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Schurr, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Silver, J. A.

Sonenfroh, D. M.

Song, F. J.

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

Stanton, A. C.

Wagner, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Wainner, R. T.

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Wang, Q.

Q. Wang, J. Chang, C. Zhu, and Y. Liu, “High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller,” Appl. Opt. 52, 1094–1099 (2013).

Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
[CrossRef]

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

Webb, D. J.

Wunderle, K.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

Zhang, S. C.

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

Zhang, W.

Zhang, Y.

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

Zhu, C.

Q. Wang, J. Chang, C. Zhu, and Y. Liu, “High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller,” Appl. Opt. 52, 1094–1099 (2013).

Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

Q. Wang, J. Chang, and C. Zhu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012).
[CrossRef]

Proc. SPIE (4)

P. C. D. Hobbs, “Shot noise optical measurement at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990).
[CrossRef]

K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
[CrossRef]

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE 5068, 393–395 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Kormann, R. Konigstedt, U. Parchatka, J. Lelieveld, and H. Fischer, “QUALITAS: a mid-infrared spectrometer for sensitive trace gas measurements based on quantum cascade lasers in CW operation,” Rev. Sci. Instrum. 76, 075102 (2005).
[CrossRef]

Telecommun. Sci. (1)

X. Mengchi, “Research and measurement of optical fibre macrobend loss,” Telecommun. Sci. 25, 57–62 (2009).

Trans. Inst. Electron. Commun. Eng. Jpn. E (1)

S. Okamura and M. Maruyama, “Improvement on the sensitivity of electro-optical system for electric field strength measurements,” Trans. Inst. Electron. Commun. Eng. Jpn. E 65, 702 (1982).

Other (4)

Y. Zhang, J. Chang, Q. Wang, S. C. Zhang, and F. J. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” in Proceedings of the 2011 International Conference on Electronics and Optoelectronics (IEEE, 2011), pp. 315–319.

R. T. Wainner, M. B. Frish, M. C. Laderer, M. G. Allen, and B. D. Green, “Tunable diode laser wavelength modulation spectroscopy (TDL-WMS) using a fiber-amplified source,” in IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (IEEE, 2007), pp. 1–2.

Q. Jianxin and H. Feng, “Study on angle deviation for coupling loss in fiber collimator packaging,” in 6th International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 1–4.

Q. Jianxin and H. Feng, “Study on pitch deviation for coupling loss in fiber collimator packing,” in 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (IEEE, 2005), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the DWMS experimental system.

Fig. 2.
Fig. 2.

Schematic diagram of the division demodulation circuit.

Fig. 3.
Fig. 3.

Schematic diagram of the subtraction demodulation circuit.

Fig. 4.
Fig. 4.

Schematic diagram of the BRD demodulation circuit.

Fig. 5.
Fig. 5.

Original simulated signals.

Fig. 6.
Fig. 6.

Comparison of water vapor absorption measurements based on different demodulation methods at 23.8°C and 24.8°C.

Fig. 7.
Fig. 7.

Results of the tests on the different demodulation methods.

Fig. 8.
Fig. 8.

Comparison of the water vapor absorption measurements based on the division and BRD methods with laser power attenuation.

Fig. 9.
Fig. 9.

Macrobend loss test results of the different demodulation methods.

Tables (4)

Tables Icon

Table 1. Effect of Ambient Temperature on the Coupling Coefficient of the Fused-Biconical Single-Mode Coupler

Tables Icon

Table 2. Effect of Ambient Temperature on the Insertion Loss of Fiber Collimator

Tables Icon

Table 3. Effect of Ambient Temperature on the Power of DFB-LD with Pigtail

Tables Icon

Table 4. Macrobend Loss of Single-Mode Optical Fiber (G.652D)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I=I0exp(αCL),
exp(αCL)1αCL,
C(II01).
CI0I.
V1=Gln(IrefIsig1),
V1=Gln(eαCL1).
exp(αCL)1αCL,
dV1=(Gu)d(αCL),
u=IrefIsig1.
PFRR=10logΔIpowerΔIsignal,

Metrics