Abstract

We report on the optical limiting (OL) in stable aqueous suspensions of detonation nanodiamond (ND) clusters with average size of 50, 110, and 320 nm. The nanosecond Z-scan measurements at wavelength of 532 nm revealed that the larger the cluster size, the better the OL performance and the higher the ray stability of the ND suspension. Our analysis showed that the nonlinear scattering and the nonlinear absorption are the dominant mechanisms of OL in aqueous ND suspensions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  2. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
    [CrossRef]
  3. Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
    [CrossRef]
  4. C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
    [CrossRef]
  5. B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.
  6. D. Vincent, S. Petit, and S. Chin, “Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002).
    [CrossRef]
  7. Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).
  8. L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
    [CrossRef]
  9. E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
    [CrossRef]
  10. G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
    [CrossRef]
  11. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  12. L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
    [CrossRef]
  13. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
    [CrossRef]
  14. X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
    [CrossRef]
  15. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
    [CrossRef]
  16. Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
    [CrossRef]
  17. J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008).
    [CrossRef]
  18. O. Muller, Y. Lutz, J.-P. Moeglin, A. Teissier, and V. Keller, “Optical limiting behavior of carbon nanotubes exposed to infrared laser irradiations studied by the Z-scan technique,” Appl. Opt. 49, 1097–1103 (2010).
    [CrossRef]
  19. X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
    [CrossRef]
  20. N. Izard, P. Billaud, D. Riehl, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30, 1509–1511 (2005).
    [CrossRef]
  21. S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
    [CrossRef]
  22. G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
    [CrossRef]
  23. G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
    [CrossRef]
  24. G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
    [CrossRef]
  25. N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
    [CrossRef]
  26. V. S. Bondar and A. P. Puzyr, “Nanodiamonds for biological investigations,” Phys. Solid State 46, 716–719 (2004).
    [CrossRef]
  27. A. P. Puzyr and V. S. Bondar, “A method of obtaining an explosive synthesis of nanodiamonds with high colloidal stability,” Russian patent2252192 (20May2005).
  28. A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.
  29. R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999).
    [CrossRef]
  30. G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).
  31. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 3406–3410 (1983).
    [CrossRef]
  32. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13, 1833–1838 (2005).
    [CrossRef]
  33. S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
    [CrossRef]
  34. E. Van Stryland and S.-B. Mansoor, “Z-scan measurements of optical nonlinearities,” Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzik, ed. (Marcel Dekker, 1998), pp. 655–692.
  35. Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
    [CrossRef]
  36. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004).
    [CrossRef]
  37. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
    [CrossRef]
  38. K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
    [CrossRef]
  39. K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
    [CrossRef]
  40. V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
    [CrossRef]

2012

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012).
[CrossRef]

2011

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

2010

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

O. Muller, Y. Lutz, J.-P. Moeglin, A. Teissier, and V. Keller, “Optical limiting behavior of carbon nanotubes exposed to infrared laser irradiations studied by the Z-scan technique,” Appl. Opt. 49, 1097–1103 (2010).
[CrossRef]

2009

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

2008

J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008).
[CrossRef]

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

2005

2004

2003

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

2002

D. Vincent, S. Petit, and S. Chin, “Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002).
[CrossRef]

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

2001

2000

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

1999

R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999).
[CrossRef]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

1998

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
[CrossRef]

1995

1993

L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1992

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).

1986

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
[CrossRef]

1983

Akhouayri, H.

Anglaret, E.

N. Izard, P. Billaud, D. Riehl, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30, 1509–1511 (2005).
[CrossRef]

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Band, Y. B.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
[CrossRef]

Bandyopadhyay, R.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Bavli, R.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
[CrossRef]

Billard, F.

Billaud, P.

Blau, W.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008).
[CrossRef]

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Bogges, T. F.

L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Bondar, V.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Bondar, V. S.

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

V. S. Bondar and A. P. Puzyr, “Nanodiamonds for biological investigations,” Phys. Solid State 46, 716–719 (2004).
[CrossRef]

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

A. P. Puzyr and V. S. Bondar, “A method of obtaining an explosive synthesis of nanodiamonds with high colloidal stability,” Russian patent2252192 (20May2005).

Brenner, D.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Bukayemsky, A. A.

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

Bulatov, D.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

Bulatov, D. L.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

Chang, H.-C.

K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
[CrossRef]

Chen, P.

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Chen, Y.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Cheng, C.-L.

K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
[CrossRef]

Chin, S.

Coleman, J.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Cook, M.

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Couris, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Detkov, P.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Dong, H.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Du, X.-W.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Ensley, T. R.

Ferdinandus, M. R.

Fishman, D. A.

Fitzgerald, Z.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Garetz, B. A.

Gibson, N.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Goh, S.

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

Gong, Q.

Govindaraj, A.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Greenwood, R.

R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999).
[CrossRef]

Guo, Z.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Hache, F.

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Hagan, D.

Hagan, D. J.

Hanack, M.

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Harter, D. J.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
[CrossRef]

He, Y.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

Herrman, W.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Hold, S.

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Hore, T.

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Hu, H.

Huang, L.

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

Huang, X.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Ishchenko, A. V.

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

Izard, N.

Ji, W.

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Jin, Z.

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

Kargin, V. F.

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

Keller, V.

Kendall, K.

R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999).
[CrossRef]

Khosrofian, J. M.

Kokkinaki, O.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Konstantaki, M.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Korovin, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Kost, A.

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Koudoumas, E.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Kuhn, F.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Kuznetsov, V.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Kuznetsov, V. L.

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

Lancon, P.

Li, Q.

Li, R.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Li, Y.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

Li, Z.-Q.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Lim, J.

Lin, J.

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Lin, K.-W.

K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
[CrossRef]

Liu, C.

Liu, Z.

Lotya, M.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Luo, T.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Lutz, Y.

Maleev, D. I.

G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).

Mansoor, S.-B.

E. Van Stryland and S.-B. Mansoor, “Z-scan measurements of optical nonlinearities,” Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzik, ed. (Marcel Dekker, 1998), pp. 655–692.

Mehendale, S.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Mikheev, G.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

Mikheev, G. M.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).

Mikheev, K. G.

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

Mishra, S.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Moeglin, J.-P.

Mogileva, T.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

Mogileva, T. N.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).

Moiseenkov, S. I.

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

Moseenkov, S.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Muller, O.

Nashold, K. M.

Niu, K.-Y.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

O’Flaherty, S.

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Okotrub, A.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

Okotrub, A. V.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

Olivier, T.

Petit, S.

Pimenov, S.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Purtov, K.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Purtov, K. V.

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

Pustovoi, V.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Puzir, A.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Puzyr, A. P.

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

V. S. Bondar and A. P. Puzyr, “Nanodiamonds for biological investigations,” Phys. Solid State 46, 716–719 (2004).
[CrossRef]

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

A. P. Puzyr and V. S. Bondar, “A method of obtaining an explosive synthesis of nanodiamonds with high colloidal stability,” Russian patent2252192 (20May2005).

Qin, Y.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Rao, C.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Rawat, H.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Reichert, M.

Riehl, D.

N. Izard, P. Billaud, D. Riehl, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30, 1509–1511 (2005).
[CrossRef]

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Rustagi, K.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Selyutin, G. E.

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

Shenderova, O.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

Song, Y.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Sood, A.

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Sun, J.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Sun, X.

X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000).
[CrossRef]

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Tan, K.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Teissier, A.

Tian, Y.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Torres, T.

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Tutt, L. W.

L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Van Stryland, E.

Vanyukov, V.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

Vanyukov, V. V.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

Vincent, D.

Vivien, L.

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001).
[CrossRef]

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

Walter, D. P.

Wang, B.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Wang, J.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008).
[CrossRef]

Wang, Q.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Wang, Y.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Webster, S.

Wu, X.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Xin, X.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Xiong, Y.

Xu, G.

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Yang, J.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Yang, S.

Yu, R.

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Zhang, C.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

Zhang, J.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

Zhang, L.

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

Zheng, H.-M.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Zhu, J.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

Zhu, Y.

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Adv. Mater.

C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002).
[CrossRef]

S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003).
[CrossRef]

Angew. Chem.

K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008).
[CrossRef]

Appl. Phys. Lett.

X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998).
[CrossRef]

Carbon

L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Chem. Mater.

K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998).
[CrossRef]

Chem. Phys. Lett.

E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002).
[CrossRef]

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986).
[CrossRef]

S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000).
[CrossRef]

Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002).
[CrossRef]

Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008).
[CrossRef]

Diam. Relat. Mater.

N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009).
[CrossRef]

J. Eur. Ceram. Soc.

R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999).
[CrossRef]

J. Nanoelectron. Optoelectron.

V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nanotech.

Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).

Nature

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. Lett.

P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999).
[CrossRef]

Phys. Solid State

V. S. Bondar and A. P. Puzyr, “Nanodiamonds for biological investigations,” Phys. Solid State 46, 716–719 (2004).
[CrossRef]

Prog. Quantum Electron.

L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Quantum Electron.

G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010).
[CrossRef]

G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009).
[CrossRef]

Sov. J. Quantum Electron.

G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).

Tech. Phys. Lett.

G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011).
[CrossRef]

G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010).
[CrossRef]

Other

B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.

E. Van Stryland and S.-B. Mansoor, “Z-scan measurements of optical nonlinearities,” Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzik, ed. (Marcel Dekker, 1998), pp. 655–692.

A. P. Puzyr and V. S. Bondar, “A method of obtaining an explosive synthesis of nanodiamonds with high colloidal stability,” Russian patent2252192 (20May2005).

A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) X-ray diffraction patterns of ND clusters with size 50 nm (1) and 320 nm (2). The patterns were recorded on a DRON-3 diffractometer. One can observe the diamond reflections from the (111), (220), and (311) planes at 2θ=44.0°, 75.7°, and 91.6°, respectively. (b) High-resolution TEM image of the suspension with average particle size of 110 nm was obtained with JEOL 100 C electron microscope.

Fig. 2.
Fig. 2.

Optical density of ND aqueous suspensions with average particle sizes 320 nm (L), 110 nm (M), and 50 nm (S) as a function of the wavelength. The sample thickness are 1.01 mm. Optical density is measured relative to the DW.

Fig. 3.
Fig. 3.

Sketch of the open-aperture Z-scan setup.1—laser, 2—half-wave plate, 3—Glan–Thompson polarizer, 4—mirror, 5—reference detector A, 6—Glan–Thompson polarizer, 7—focusing lens (F=100mm), 8—sample, 9—signal detector B, 10, 11—slit-like apertures, 12—short focusing lens, 13—signal detector C.

Fig. 4.
Fig. 4.

(a) Output fluence and (b) energy of scattered pulses as a function of input fluence for S, M, and L samples. Black points in (a) show results of the measurements with DW.

Fig. 5.
Fig. 5.

Energy of scattered pulses normalized to input fluence in linear and logarithmetic (inset) scale of abscises axes for L and M samples as a function of the input fluence.

Fig. 6.
Fig. 6.

Transmittance of the M sample (110 nm ND clusters) as a function of sample position z in the closed-aperture Z-scan experiment. Each experimental point was obtained by averaging over 30 laser pulses.

Fig. 7.
Fig. 7.

(a) Normalized transmittance and (b) energy of scattered pulses of the M sample (110 nm ND clusters) as functions of sample position z in the open-aperture Z-scan experiment.

Fig. 8.
Fig. 8.

(a) Transmittance of the M sample (110 nm ND clusters) as a function of sample position z in the open-aperture Z-scan experiment. Solid line corresponds to fitting with Eq. (3) at a=0.62, b=4.08mm, and c=2.41. (b) The energy of scattered pulses normalized to the energy of incident pulses Q(z) for the M sample. One can observe that contribution of the nonlinear scattering Qn(z) is maximum at the focal point. (c) Nonlinear absorption An(z) obtained from Eq. (7) at An(0)=0.

Fig. 9.
Fig. 9.

(a) Transmittance and (b) energy of scattered pulses normalized to the energy of incident pulses as functions of number of laser pulses. Each point was averaged over 50 laser pulses. Vertical lines show the standard deviation of experimental data from the mean values.

Tables (1)

Tables Icon

Table 1. Average Particle Size, PDI, Zeta Potential, and OL Threshold of the ND Suspensions

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Wout=T0Wt[1exp{WinWt}],
ESWin=B{1+AS1[1exp{WinWS1}]+AS2[1exp{WinWS2}]},
ES=BWin,
ES=B(1+AS1+AS2)Win.
T(z)=T0aexp[1/2×(z/b)c],
Q(z)=Ql+Qn(z),
T+A+S+R=1,
S=k(Ql+Qn(z)),
A(z)=Al+An(z),
T0+kQl+Al+R=1,
An(z=0)+kQn(z=0)=T0T(z=0).
An(z)=T0T(z)T0T(z=0)An(z=0)Qn(z=0)Qn(z).

Metrics