Abstract

Optical simulation software based on the ray-tracing method offers easy and fast results in imaging optics. This method can also be applied in other fields of light propagation. For short distance communications, polymer optical fibers (POFs) are gradually gaining importance. This kind of fiber offers a larger core diameter, e.g., the step index POF features a core diameter of 980 μm. Consequently, POFs have a large number of modes (>3million modes) in the visible range, and ray tracing could be used to simulate the propagation of light. This simulation method is applicable not only for the fiber itself but also for the key components of a complete POF network, e.g., couplers or other key elements of the transmission line. In this paper a demultiplexer designed and developed by means of ray tracing is presented. Compared to the classical optical design, requirements for optimal design differ particularly with regard to minimizing the insertion loss (IL). The basis of the presented key element is a WDM device using a Rowland spectrometer setup. In this approach the input fiber carries multiple wavelengths, which will be divided into multiple output fibers that transmit only one wavelength. To adapt the basic setup to POF, the guidance of light in this element has to be changed fundamentally. Here, a monolithic approach is presented with a blazed grating using an aspheric mirror to minimize most of the aberrations. In the simulations the POF is represented by an area light source, while the grating is analyzed for different orders and the highest possible efficiency. In general, the element should be designed in a way that it can be produced with a mass production technology like injection molding in order to offer a reasonable price. However, designing the elements with regard to injection molding leads to some inherent challenges. The microstructure of an optical grating and the thick-walled 3D molded parts both result in high demands on the injection molding process. This also requires complex machining of the molding tool. Therefore, different experiments are done to optimize the process parameter, find the best molding material, and find a suitable machining method for the molding tool. The paper will describe the development of the demultiplexer by means of ray-tracing simulations step by step. Also, the process steps and the realized solutions for the injection molding are described.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).
  2. H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).
  3. J. Marcou, Plastic Optical Fibres—Practical Applications (Wiley, 1997).
  4. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, 1999).
  5. Infineon Technologies AG, http://www.infineon.com/de/ (2008).
  6. H. Kragl, “A product family for simplex POF home networks,” http://www.pofac.de/itg/fg_5_4_1/de/fachgruppentreffen/treffen21.php (2006).
  7. W. W. Morey and Y. Li, “Fiber gratings for WDM devices,” Proc. SPIE 3949, 50–61 (2000).
    [CrossRef]
  8. J. Colachino, “Mux/DeMux optical specifications and measurements,” Lightchip Inc. white paper (Lightreading, 2001).
  9. A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.
  10. C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
    [CrossRef]
  11. Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).
  12. Fraunhofer Institute for Integrated Circuits, “Optical multiplexer for short range communication” (2008).
  13. U. H. P. Fischer and M. Haupt, “WDM over POF: the inexpensive way to breakthrough the limitation of bandwidth of standard POF communication,” Proc. SPIE 6478, 64780I (2007).
  14. A. Last and J. Mohr, “Fehllicht in LIGA-Mikrospektrometern,” in Forschungszentrum Karlsruhe Technik und Umwelt, Vol. 6885 of Wissenschaftliche Berichte (FZKA, 2003).
  15. H. Blechinger, “OpTaliX: optical design software,” http://www.optenso.com (2012).
  16. U. H. P. Fischer and M. Haupt, “Advanced integrated WDM System for POF communication,” Proc. SPIE 7234, 72340C (2009).
  17. M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).
  18. J. P. Ferguson and S. Schoenfelder, “Micromoulded spectrometers produced by the Liga process,” Searching for Information: Artificial Intelligence and Information Retrieval Approaches (IEEE, 1999), paper 11.
  19. M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
    [CrossRef]
  20. D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).
  21. M. Hetschel, “Abformung von Nanostrukturen im Spritzgießverfahren zur Erzeugung von Antireflexoberflächen,” Ph.D. Dissertation (Technische Universität Berlin, 2005).
  22. J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
    [CrossRef]
  23. W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).
  24. P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

2011

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

2010

P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

2009

U. H. P. Fischer and M. Haupt, “Advanced integrated WDM System for POF communication,” Proc. SPIE 7234, 72340C (2009).

M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).

2007

U. H. P. Fischer and M. Haupt, “WDM over POF: the inexpensive way to breakthrough the limitation of bandwidth of standard POF communication,” Proc. SPIE 6478, 64780I (2007).

J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
[CrossRef]

2006

D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).

2003

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

2000

W. W. Morey and Y. Li, “Fiber gratings for WDM devices,” Proc. SPIE 3949, 50–61 (2000).
[CrossRef]

1992

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Auracher, F.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Batchellor, C. R.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Bergner, B. C.

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

Brandrup, J.

J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, 1999).

Chraplyvy, A. R.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Colachino, J.

J. Colachino, “Mux/DeMux optical specifications and measurements,” Lightchip Inc. white paper (Lightreading, 2001).

Copponnex, T.

J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
[CrossRef]

Daum, W.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Davies, M. A.

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

Debney, B. T.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Derosier, R. M.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Dornfeld, D.

D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).

Evans, C. J.

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

Ferguson, J. P.

J. P. Ferguson and S. Schoenfelder, “Micromoulded spectrometers produced by the Liga process,” Searching for Information: Artificial Intelligence and Information Retrieval Approaches (IEEE, 1999), paper 11.

Fischer, U. H. P.

U. H. P. Fischer and M. Haupt, “Advanced integrated WDM System for POF communication,” Proc. SPIE 7234, 72340C (2009).

U. H. P. Fischer and M. Haupt, “WDM over POF: the inexpensive way to breakthrough the limitation of bandwidth of standard POF communication,” Proc. SPIE 6478, 64780I (2007).

Forhieri, F.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Giboz, J.

J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
[CrossRef]

Giessauf, J.

M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).

Gnauck, A. H.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Grulke, E. A.

J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, 1999).

Hao, Y.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Haupt, M.

U. H. P. Fischer and M. Haupt, “Advanced integrated WDM System for POF communication,” Proc. SPIE 7234, 72340C (2009).

U. H. P. Fischer and M. Haupt, “WDM over POF: the inexpensive way to breakthrough the limitation of bandwidth of standard POF communication,” Proc. SPIE 6478, 64780I (2007).

Heßner, S.

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

Hetschel, M.

M. Hetschel, “Abformung von Nanostrukturen im Spritzgießverfahren zur Erzeugung von Antireflexoberflächen,” Ph.D. Dissertation (Technische Universität Berlin, 2005).

Heydt, G.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Hopmann, C.

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

Immergut, E. H.

J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, 1999).

Jiang, X.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Jopson, R. M.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Krauser, J.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Lagasse, P.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Last, A.

A. Last and J. Mohr, “Fehllicht in LIGA-Mikrospektrometern,” in Forschungszentrum Karlsruhe Technik und Umwelt, Vol. 6885 of Wissenschaftliche Berichte (FZKA, 2003).

Li, Y.

W. W. Morey and Y. Li, “Fiber gratings for WDM devices,” Proc. SPIE 3949, 50–61 (2000).
[CrossRef]

Lucero, A. J.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Lück, A.

P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

Marcou, J.

J. Marcou, Plastic Optical Fibres—Practical Applications (Wiley, 1997).

McCormick, A. R.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Mélé, P.

J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
[CrossRef]

Michaeli, W.

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

Militsch, M.

P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

Min, S.

D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).

Mohr, J.

A. Last and J. Mohr, “Fehllicht in LIGA-Mikrospektrometern,” in Forschungszentrum Karlsruhe Technik und Umwelt, Vol. 6885 of Wissenschaftliche Berichte (FZKA, 2003).

Morey, W. W.

W. W. Morey and Y. Li, “Fiber gratings for WDM devices,” Proc. SPIE 3949, 50–61 (2000).
[CrossRef]

Nalwa, H. S.

H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).

Patterson, S. R.

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

Pillwein, G.

M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).

Schoenfelder, S.

J. P. Ferguson and S. Schoenfelder, “Micromoulded spectrometers produced by the Liga process,” Searching for Information: Artificial Intelligence and Information Retrieval Approaches (IEEE, 1999), paper 11.

Stricker, M.

M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).

Sulhoff, J. W.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Sun, Y.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Swanenburg, T. J. B.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Takeuchi, Y.

D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).

Thienel, P.

P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

Thorley, A. M.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

Tkach, R. W.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Vohra, R. R.

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

Walach, P.

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

Wang, M.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Wolf, C.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Yang, J.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Zamzow, P. E.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Zheng, W.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Zhou, H.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Zhou, J.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Ziemann, O.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

Zyskind, J. L.

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

CIRP Ann.: Manuf. Technol.

D. Dornfeld, S. Min, and Y. Takeuchi, “Recent advances in mechanical micromachining,” CIRP Ann.: Manuf. Technol. 55, 745–768 (2006).

Electron. Commun. Eng. J.

C. R. Batchellor, B. T. Debney, A. M. Thorley, T. J. B. Swanenburg, G. Heydt, F. Auracher, and P. Lagasse, “A coherent multichannel demonstrator,” Electron. Commun. Eng. J. 4, 235–242 (1992).
[CrossRef]

J. Micromech. Microeng.

J. Giboz, T. Copponnex, and P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” J. Micromech. Microeng. 17, R96–R109 (2007).
[CrossRef]

J. Plastics Technol.

W. Michaeli, C. Hopmann, S. Heßner, and P. Walach, “Injection-compression moulding of aspherical plastic lenses,” J. Plastics Technol. 3, 116–136 (2011).

Kunststoffe

P. Thienel, A. Lück, and M. Militsch, “Das Spiel mit dem Licht,” Kunststoffe 6, 22–28 (2010).

Kunststoffe international

M. Stricker, G. Pillwein, and J. Giessauf, “Focus on precision—injection molding optical components,” Kunststoffe international 4, 15–19 (2009).

Proc. SPIE

U. H. P. Fischer and M. Haupt, “WDM over POF: the inexpensive way to breakthrough the limitation of bandwidth of standard POF communication,” Proc. SPIE 6478, 64780I (2007).

U. H. P. Fischer and M. Haupt, “Advanced integrated WDM System for POF communication,” Proc. SPIE 7234, 72340C (2009).

M. A. Davies, C. J. Evans, R. R. Vohra, B. C. Bergner, and S. R. Patterson, “Application of precision diamond machining to the manufacture of microphotonics components,” Proc. SPIE 5183, 94–108 (2003).
[CrossRef]

W. W. Morey and Y. Li, “Fiber gratings for WDM devices,” Proc. SPIE 3949, 50–61 (2000).
[CrossRef]

Other

J. Colachino, “Mux/DeMux optical specifications and measurements,” Lightchip Inc. white paper (Lightreading, 2001).

A. H. Gnauck, A. R. Chraplyvy, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forhieri, R. M. Derosier, C. Wolf, and A. R. McCormick, “One terabit/s transmission experiment,” Optical Fiber Communication Conference, of 1996 OSA Technical Digest Series (Optical Society of America, 1996), Vol. 2, paper PD20.

Y. Hao, J. Yang, X. Jiang, W. Zheng, J. Zhou, H. Zhou, and M. Wang, “Analysis on curved waveguide grating (CWG) with Rowland circle construction,” IEEE Optical Fiber Communication and Optoelectronics Conference (IEEE, 2007).

Fraunhofer Institute for Integrated Circuits, “Optical multiplexer for short range communication” (2008).

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF Handbook: Optical Short Range Transmission Systems (Springer-Verlag, 2008).

H. S. Nalwa, Polymer Optical Fibers (American Scientific, 2004).

J. Marcou, Plastic Optical Fibres—Practical Applications (Wiley, 1997).

J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, 1999).

Infineon Technologies AG, http://www.infineon.com/de/ (2008).

H. Kragl, “A product family for simplex POF home networks,” http://www.pofac.de/itg/fg_5_4_1/de/fachgruppentreffen/treffen21.php (2006).

M. Hetschel, “Abformung von Nanostrukturen im Spritzgießverfahren zur Erzeugung von Antireflexoberflächen,” Ph.D. Dissertation (Technische Universität Berlin, 2005).

A. Last and J. Mohr, “Fehllicht in LIGA-Mikrospektrometern,” in Forschungszentrum Karlsruhe Technik und Umwelt, Vol. 6885 of Wissenschaftliche Berichte (FZKA, 2003).

H. Blechinger, “OpTaliX: optical design software,” http://www.optenso.com (2012).

J. P. Ferguson and S. Schoenfelder, “Micromoulded spectrometers produced by the Liga process,” Searching for Information: Artificial Intelligence and Information Retrieval Approaches (IEEE, 1999), paper 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Comparison of different light guides. HCSF, hard clad silica optical fiber; GOF, glass optical fiber.

Fig. 2.
Fig. 2.

Principle sketch of a Rowland spectrometer.

Fig. 3.
Fig. 3.

2D plot of the demultiplexer.

Fig. 4.
Fig. 4.

Grating efficiency for different diffraction orders.

Fig. 5.
Fig. 5.

Spot diagram (a) not optimized, circle diameter 1 mm, and (b) optimized, circle diameter 1 mm.

Fig. 6.
Fig. 6.

Image layer of the setup for an area light source (scale in mm).

Fig. 7.
Fig. 7.

3D model of the DEMUX component.

Fig. 8.
Fig. 8.

Cross-sectional view of the DEMUX with the locations of the POFs.

Fig. 9.
Fig. 9.

Grating of the demultiplexer.

Fig. 10.
Fig. 10.

Pressure distribution of injection–compression molding [24].

Fig. 11.
Fig. 11.

Injection molded test plate.

Fig. 12.
Fig. 12.

Diesel effect.

Fig. 13.
Fig. 13.

Voids and overmolding.

Fig. 14.
Fig. 14.

After the first step of process optimization.

Fig. 15.
Fig. 15.

Transmissions of different materials at 405 nm (2 mm thickness).

Fig. 16.
Fig. 16.

Transmission of TOPAS 5013 over the visible spectrum (2 mm thickness).

Tables (2)

Tables Icon

Table 1. Machining Methods for Molding

Tables Icon

Table 2. Injection Mold Materials for MUX/DEMUX Elementa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

zλ=g(sinα+sinβ),
λΔλzN.

Metrics