Abstract

A differential detection method (DDM) with a utility type and ease of realization for a micro-grating accelerometer is reported so as to reduce the common-mode noise and improve the sensitivity of the micro-grating accelerometer. The theoretical model is established, based on scalar diffraction theory for differential detection. According to the simulation and analysis of the DDM, the theoretical result shows that the sensitivity of the micro-grating accelerometer can be improved by at least a factor of 2. Based on the analysis, the detection circuit is designed with proper parameters and devices for the handheld experimental prototype, which is realized with our micro-grating acceleration sensor fabricated by inductively coupled plasma, lift-off, and anodic bonding of glass/silicon, etc. The prototype experiment is conducted with the turntable. Compared with the single-order detection method whose sensitivities are 6.797V/g (zeroth order, 1g=9.8m/s2) and 7.767V/g (first-order), the result of the DDM shows that the sensitivity of the micro-grating accelerometer is 18.61V/g with an improvement of over two times. The overall signal-to-noise ratio improvement is 6.47 dB with the input of 0.86 g.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
    [CrossRef]
  2. D. W. Carr, “MEMS and optoelectronics integration for physical sensors,” presented at SEM Annual Conference & Exposition on Experimental and Applied Mechanics - Experimental Mechanics Applied to Advanced Materials and Systems, 2007.
  3. U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
    [CrossRef]
  4. N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
    [CrossRef]
  5. K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
    [CrossRef]
  6. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [CrossRef]
  7. N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.
  8. P. C. Beard and N. T. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
    [CrossRef]
  9. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
    [CrossRef]
  10. B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
    [CrossRef]
  11. L. M. Smith and C. C. Dobson, “Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer,” Appl. Opt. 28, 3339–3342 (1989).
    [CrossRef]
  12. N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80, 3859–3861 (2002).
    [CrossRef]
  13. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1990), pp. 75–82.
  14. W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
    [CrossRef]

2012 (2)

K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
[CrossRef]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

2009 (1)

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

2008 (2)

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

2004 (1)

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

2002 (2)

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80, 3859–3861 (2002).
[CrossRef]

2000 (1)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

1997 (1)

P. C. Beard and N. T. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

1989 (1)

Baker, M. S.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Beard, P. C.

P. C. Beard and N. T. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

Bélanger, J. A.

K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
[CrossRef]

Bicen, B.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Bogart, G. R.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Buma, T.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

Carr, D. W.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

D. W. Carr, “MEMS and optoelectronics integration for physical sensors,” presented at SEM Annual Conference & Exposition on Experimental and Applied Mechanics - Experimental Mechanics Applied to Advanced Materials and Systems, 2007.

Clews, P. J.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Cui, W.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

Degertekin, F. L.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80, 3859–3861 (2002).
[CrossRef]

N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.

Dervan, J.

N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.

Dobson, C. C.

Garcia, C. T.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Hall, N. A.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80, 3859–3861 (2002).
[CrossRef]

N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.

Hamilton, J. D.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

Jeelani, K.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

Jolly, S.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

Keeler, G. A.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Krishnamoorthy, U.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Lee, W.

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Littrell, R.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Loh, N. C.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

Manalis, S. R.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

Miles, R. N.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

Mills, N. T.

P. C. Beard and N. T. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

O’Donnell, M.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

Okandan, M.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Olsson, R. H.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Painter, O.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Peter, Y.

K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
[CrossRef]

Peterson, K.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Schmidt, M. A.

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

Serkland, D. K.

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

Smith, L. M.

Spisar, M.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

Su, Q.

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

Swiler, T. P.

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Udd, E.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1990), pp. 75–82.

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Zandi, K.

K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
[CrossRef]

Zhou, Z.

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80, 3859–3861 (2002).
[CrossRef]

Electron. Lett. (1)

P. C. Beard and N. T. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Lee, N. A. Hall, Z. Zhou, and F. L. Degertekin, “Fabrication and characterization of a micromachined acoustic sensor with integrated optical readout,” IEEE J. Sel. Top. Quantum Electron. 10, 643–651 (2004).
[CrossRef]

IEEE Sens. J. (1)

B. Bicen, S. Jolly, K. Jeelani, C. T. Garcia, N. A. Hall, F. L. Degertekin, Q. Su, W. Cui, and R. N. Miles, “Integrated optical displacement detection and electrostatic actuation for directional optical microphones with micromachined biomimetic diaphragms,” IEEE Sens. J. 9, 1933–1941 (2009).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 160–169 (2000).
[CrossRef]

J. Microelectromech. Syst. (3)

N. A. Hall, M. Okandan, R. Littrell, D. K. Serkland, G. A. Keeler, K. Peterson, B. Bicen, C. T. Garcia, and F. L. Degertekin, “Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation,” J. Microelectromech. Syst. 17, 37–44 (2008).
[CrossRef]

N. C. Loh, M. A. Schmidt, and S. R. Manalis, “Sub-10  cm2 interferometry accelerometer with nano-g resolution,” J. Microelectromech. Syst. 11, 182–187 (2002).
[CrossRef]

K. Zandi, J. A. Bélanger, and Y. Peter, “Design and demonstration of an in-plane silicon-on insulator optical MEMS Fabry–Pérot-based accelerometer integrated with channel waveguides,” J. Microelectromech. Syst. 21, 1464–1470 (2012).
[CrossRef]

Nat. Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[CrossRef]

Sens. Actuators A (1)

U. Krishnamoorthy, R. H. Olsson, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, and P. J. Clews, “In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor,” Sens. Actuators A 145–146, 283–290 (2008).
[CrossRef]

Other (3)

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, 1990), pp. 75–82.

N. A. Hall, W. Lee, J. Dervan, and F. L. Degertekin, “Micromachined capacitive transducers with improved optical detection for ultrasound applications in air,” in Proceedings of IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1028–1030.

D. W. Carr, “MEMS and optoelectronics integration for physical sensors,” presented at SEM Annual Conference & Exposition on Experimental and Applied Mechanics - Experimental Mechanics Applied to Advanced Materials and Systems, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the MGAS.

Fig. 2.
Fig. 2.

Zeroth- and first-diffracted order intensities versus gap distance.

Fig. 3.
Fig. 3.

Slope of the intensity versus gap distance. Maximal slope of the zeroth order and differential intensities are 2π and 4π at the optimum gap distance, respectively.

Fig. 4.
Fig. 4.

Differential voltage output versus gap distance. Two types of linear regions exist with opposite slopes for the differential detection system.

Fig. 5.
Fig. 5.

Top: normalized output with different offset voltage when normalized transform coefficients T0=T1=1. Bottom: normalized output with different normalized transform coefficients when offset voltage Uoffset=0.

Fig. 6.
Fig. 6.

Differential detection system diagram of the micro-grating accelerometer. Typical second-order low-pass filter is used to stabilize the signal of the amplifier. Offset voltage Uoffset is adjusted by the changeable voltage reference circuit.

Fig. 7.
Fig. 7.

(a) Three-dimensional model of the handheld experimental prototype. The reflector is placed on the light propagation paths of zeroth and first-order lightwaves for the handheld realizing of the prototype. (b) Top view of the MGAS.

Fig. 8.
Fig. 8.

Relationship between the circuit outputs and acceleration.

Fig. 9.
Fig. 9.

Spectrum of the output signals when only the first diffraction order (black) and the difference between the zeroth and first-orders (red) are used for acceleration detection.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I0=Iincos2(Φ2)=Iincos2(2πdλ),
I1=4Iinπ2sin2(Φ2)=4Iinπ2sin2(2πdλ),
Id=I0κ·I1=Iincos(4πdλ).
Uds=T(I0π24I1)=T·Iin[cos2(2πdλ)sin2(2πdλ)]=TIincos(4πdλ),
Uds=(A·T0·I0Uoffset)(A·T1·π24I1+Uoffset)=A·Iin[T0cos2(2πdλ)T1sin2(2πdλ)]2·Uoffset=A·Iin[T0+T12cos(4πdλ)](A·Iin·T1T02+2·Uoffset),

Metrics