Abstract

A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (Plo), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. MacDonald, Microwave Breakdown in Gases (Wiley, 1966).
  2. N. H. Farhat, “A plasma microwave power density detector,” Proc. IEEE 52, 1053–1054 (1964).
    [CrossRef]
  3. N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
    [CrossRef]
  4. N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
    [CrossRef]
  5. A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
    [CrossRef]
  6. A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
    [CrossRef]
  7. L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
    [CrossRef]
  8. A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
    [CrossRef]
  9. L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
    [CrossRef]
  10. H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
    [CrossRef]
  11. M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).
  12. B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
    [CrossRef]
  13. P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter wave glow discharge detectors,” IEEE Trans. Microwave Theory Tech. 14, 431–436 (1966).
    [CrossRef]
  14. N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes; part 1—physical description; part 11—experimental results,” IEEE Trans. Electron Devices 22, 534–548 (1975).
    [CrossRef]
  15. D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
    [CrossRef]
  16. D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
    [CrossRef]
  17. N. S. Kopeika, “Detection schemes,” in A System Engineering Approach to Imaging (SPIE, 1998), Chap. 6.1, pp. 190–193.
  18. VDI Model: WR2.8EHM shows at 300 GHz about 42 dB conversion loss, http://vadiodes.com/index.php?option=com_content&view=article&id=195%3Awr28ehm&catid=11&Itemid=13 .
  19. “Installation and Operating Instructions for the TK TeraHertz Absolute Power Meter System,” www.terahertz.co.uk .

2013 (1)

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

2012 (1)

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

2011 (3)

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

2008 (2)

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

2007 (1)

1978 (1)

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

1975 (2)

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes; part 1—physical description; part 11—experimental results,” IEEE Trans. Electron Devices 22, 534–548 (1975).
[CrossRef]

1966 (1)

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter wave glow discharge detectors,” IEEE Trans. Microwave Theory Tech. 14, 431–436 (1966).
[CrossRef]

1964 (1)

N. H. Farhat, “A plasma microwave power density detector,” Proc. IEEE 52, 1053–1054 (1964).
[CrossRef]

1957 (1)

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

1953 (1)

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Abramovich, A.

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

Aharon (Akram), A.

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

Akram, A.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

Belenky, A.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

Farber, E.

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

Farhat, N. H.

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes; part 1—physical description; part 11—experimental results,” IEEE Trans. Electron Devices 22, 534–548 (1975).
[CrossRef]

N. H. Farhat, “A plasma microwave power density detector,” Proc. IEEE 52, 1053–1054 (1964).
[CrossRef]

Hou, L.

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Joseph, H.

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

Kopeika, N. S.

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes; part 1—physical description; part 11—experimental results,” IEEE Trans. Electron Devices 22, 534–548 (1975).
[CrossRef]

N. S. Kopeika, “Detection schemes,” in A System Engineering Approach to Imaging (SPIE, 1998), Chap. 6.1, pp. 190–193.

Lampert, M. A.

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Levanon, A.

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

MacDonald, A. D.

A. D. MacDonald, Microwave Breakdown in Gases (Wiley, 1966).

Park, H.

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Rozban, D.

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Inexpensive detector for terahertz imaging,” Appl. Opt. 46, 7207–7211 (2007).
[CrossRef]

Severin, P. J. W.

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter wave glow discharge detectors,” IEEE Trans. Microwave Theory Tech. 14, 431–436 (1966).
[CrossRef]

Shi, W.

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

Udelson, B. J.

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

Van Nie, A. G.

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter wave glow discharge detectors,” IEEE Trans. Microwave Theory Tech. 14, 431–436 (1966).
[CrossRef]

White, A. D.

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

Yadid-Pecht, O.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

Yitzhaky, Y.

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

Zhang, X. C.

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

Appl. Opt. (1)

Electron. Commun. (1)

M. A. Lampert and A. D. White, “Microwave techniques for studying discharges in gases,” Electron. Commun. 30, 124–128 (1953).

IEEE Electron Device Lett. (1)

L. Hou and W. Shi, “Fast terahertz continuous-wave detector based on weakly ionized plasma,” IEEE Electron Device Lett. 33, 1583–1585 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Hou, H. Park, and X. C. Zhang, “Terahertz wave imaging system based on glow discharge detector,” IEEE J. Sel. Top. Quantum Electron. 17, 177–182 (2011).
[CrossRef]

IEEE Sens. J. (3)

H. Joseph, N. S. Kopeika, A. Abramovich, A. Akram, A. Levanon, and D. Rozban, “Heterodyne detection by miniature neon indicator lamp glow discharge detectors,” IEEE Sens. J. 11, 1879–1884 (2011).
[CrossRef]

D. Rozban, A. Levanon, H. Joseph, A. Akram, A. Abramovich, N. S. Kopeika, Y. Yitzhaky, A. Belenky, and O. Yadid-Pecht, “Inexpensive THz focal plane array imaging using neon indicator lamps as detectors,” IEEE Sens. J. 11, 1962–1968 (2011).
[CrossRef]

D. Rozban, A. Aharon (Akram), A. Levanon, N. S. Kopeika, and A. Abramovich, “W-band chirp radar mock-up using a glow discharge detector,” IEEE Sens. J. 13, 139–145 (2013).
[CrossRef]

IEEE Trans. Electron Devices (1)

N. S. Kopeika and N. H. Farhat, “Video detection of millimeter waves with glow discharge tubes; part 1—physical description; part 11—experimental results,” IEEE Trans. Electron Devices 22, 534–548 (1975).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. J. W. Severin and A. G. Van Nie, “A simple and rugged wide-band gas discharge detector for millimeter wave glow discharge detectors,” IEEE Trans. Microwave Theory Tech. 14, 431–436 (1966).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

N. S. Kopeika, “Glow discharge detection of long wavelength electromagnetic radiation: cascade ionization process internal signal gain and temporal and spectral response properties,” IEEE Trans. Plasma Sci. 6, 139–157 (1978).
[CrossRef]

J. Appl. Phys. (3)

A. Abramovich, N. S. Kopeika, and D. Rozban, “Design of inexpensive diffraction limited focal plane arrays for mm wavelength and THz radiation using glow discharge detector pixels,” J. Appl. Phys. 104, 033302 (2008).
[CrossRef]

A. Abramovich, N. S. Kopeika, D. Rozban, and E. Farber, “Terahertz detection mechanism of in expensive sensitive glow discharge detector,” J. Appl. Phys. 103, 093306 (2008).
[CrossRef]

B. J. Udelson, “Effect of microwave signals incident upon different regions of a dc hydrogen glow discharge,” J. Appl. Phys. 28, 380–381 (1957).
[CrossRef]

Proc. IEEE (2)

N. S. Kopeika, “On the mechanism of glow discharge detection of microwave and millimeter wave radiation,” Proc. IEEE 63, 981–982 (1975).
[CrossRef]

N. H. Farhat, “A plasma microwave power density detector,” Proc. IEEE 52, 1053–1054 (1964).
[CrossRef]

Other (4)

A. D. MacDonald, Microwave Breakdown in Gases (Wiley, 1966).

N. S. Kopeika, “Detection schemes,” in A System Engineering Approach to Imaging (SPIE, 1998), Chap. 6.1, pp. 190–193.

VDI Model: WR2.8EHM shows at 300 GHz about 42 dB conversion loss, http://vadiodes.com/index.php?option=com_content&view=article&id=195%3Awr28ehm&catid=11&Itemid=13 .

“Installation and Operating Instructions for the TK TeraHertz Absolute Power Meter System,” www.terahertz.co.uk .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram of the two synchronized 300 GHz sources based on RF circuit configuration and frequency multipliers.

Fig. 2.
Fig. 2.

Experimental setup for heterodyne detection with two synchronized terahertz sources differing in frequency by ΔF. BS stands for beam-splitter.

Fig. 3.
Fig. 3.

(a) Detected signal B (25 mV peak to peak) and TTL modulation signal A in direct detection configuration. (b) Detected signal (75 mV peak to peak) in heterodyne detection, for Ps=76.4μW and Plo=56μW on the active area of the GDD.

Fig. 4.
Fig. 4.

Heterodyne and direct detection summary results graph; for heterodyne detection, the LO was of constant power Plo=56μW on the active area of the GDD.

Fig. 5.
Fig. 5.

Output detected IF power of heterodyne detection as a function of the multiplication of Ps and Plo.

Fig. 6.
Fig. 6.

Detected signal for heterodyne detection with different values of ΔF on logarithmic frequency axis.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ΔI(t)=G·q2·V·nVi·m·(ττi)·η0·PD·(vv2+w2)·(1etτ).
Gexp(2·vi·td)2·vi·td,
E¯lo=Alo·cos(ωlot+φloβzz)a^x,
E¯s=As·cos(ωst+φsβzz)a^x,
i(t)=R·G·|E|2η0·Ar=R·G·Arη0·|E¯s+E¯lo|2.
I(t)=R·G·Ar2·η0[|E¯s|2+|E¯lo|2+2·Re{E¯s·E¯lo·ej(ωIFt+φIF)}]=R·[Ps+Plo+2Ps·Plocos(ωIFt+φIF)],
iIF(t)=2R·Ps·Plocos(ωIFt+φIF).
SNR=2·R2·G2·Ps·Plo2qB[R(Ps+Plo)+id]·G2+4kTeBRL,
SNR=[K·R·G·Ps]2{2q2[R(Pis)G2+id·G2]+4kTeRL}B.
NEPd=Ps_min_dB.
NEPh=Ps_min_hB,

Metrics