Abstract

The local model fitting (LMF) method is a single-shot interferometric surface profiling algorithm that possesses nondestructive, fast, accurate, and robust measurement capabilities. To extend the measurement range of LMF, extensions based on multiwavelength light sources such as the multiwavelength-matched LMF (MM-LMF) method and the multiwavelength-integrated LMF (MI-LMF) method were proposed recently. MM-LMF is computationally efficient but it tends to suffer from phase unwrapping errors, whereas MI-LMF tends to be accurate but it is computationally expensive. In this paper, we improve the computational efficiency of MI-LMF by combining it with MM-LMF via local information sharing. Through actual experiments, we demonstrate that the proposed method is approximately 10 times faster than the original MI-LMF method, with measurement accuracy kept comparable.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription