Abstract

A quantum model with the consideration of laser wave-particle duality based on the plasma model is employed for the femtosecond laser pulse train processing of fused silica. Effects of the key pulse train parameters, such as the pulse separation time and the number of pulses per train on the distributions of free electron are discussed. The calculations show that the spatial/temporal distributions of free electron can be adjusted by transient localized electron dynamics control using femtosecond laser pulse train design; the results are ablation shapes of craters and subwavelength ripples. It is also found that the first pulse separation time (Δt1) can be used for rough adjustments of ablated structures, while the second pulse separation time (Δt2) can be used for the fine tuning of ablated structures, especially the shapes of craters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
    [CrossRef]
  2. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
    [CrossRef]
  3. L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005).
    [CrossRef]
  4. I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
    [CrossRef]
  5. J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
    [CrossRef]
  6. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
    [CrossRef]
  7. N. C. Kerr, S. E. Clark, and D. C. Emmony, “High resolution imaging studies into the formation of laser-induced periodic surface structures,” Appl. Opt. 28, 3718–3724 (1989).
    [CrossRef]
  8. H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
    [CrossRef]
  9. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982).
    [CrossRef]
  10. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
    [CrossRef]
  11. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, T. Velten, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6656 (2005).
    [CrossRef]
  12. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
    [CrossRef]
  13. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule–femtosecond laser at high repetition rate,” Opt. Lett. 36, 229–231 (2011).
    [CrossRef]
  14. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
    [CrossRef]
  15. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef]
  16. Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
    [CrossRef]
  17. E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
    [CrossRef]
  18. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
    [CrossRef]
  19. Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).
  20. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4 ), A600–A619 (2010).
    [CrossRef]
  21. C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
    [CrossRef]
  22. Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
    [CrossRef]
  23. H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006).
    [CrossRef]
  24. R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
    [CrossRef]
  25. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
    [CrossRef]
  26. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
    [CrossRef]
  27. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
    [CrossRef]
  28. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).
  29. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
    [CrossRef]
  30. L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012).
    [CrossRef]

2013 (2)

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

2012 (5)

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012).
[CrossRef]

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

2011 (1)

2010 (3)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4 ), A600–A619 (2010).
[CrossRef]

2008 (1)

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

2007 (1)

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

2006 (6)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006).
[CrossRef]

R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

2005 (3)

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, T. Velten, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6656 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005).
[CrossRef]

2004 (1)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

2003 (1)

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

2000 (2)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

1989 (1)

1982 (2)

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982).
[CrossRef]

Albu, C.

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

Anhut, T.

Ashkenasi, D.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

Audouard, E.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

Bestehorn, M.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

Bounhalli, M.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Boyle, M.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

Bulgakova, N. M.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

Burakov, I. M.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

Campbell, E. E. B.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

Castillejo, M.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Cheng, Y.

Clark, S. E.

Colombier, J. P.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

Combis, P.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Costache, F.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Crawford, T. H.

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

Dachraoui, H.

H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006).
[CrossRef]

Dantus, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Dinescu, A.

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

Dörr, D.

Emmony, D. C.

Epple, M.

Ezquerra, T. A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Fauchet, P. M.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982).
[CrossRef]

Faure, N.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Filipescu, M.

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

García-Gutiérrez, M. C.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Garrelie, F.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Gottmann, J.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Harzic, R. Le

Haugen, H. K.

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

Hergenröder, R.

R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
[CrossRef]

Hertel, I. V.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

Hommes, V.

R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
[CrossRef]

Horn, A.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

Hsu, E. M.

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

Huang, M.

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Husakou, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

Husinsky, W.

H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006).
[CrossRef]

Jiang, L.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012).
[CrossRef]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005).
[CrossRef]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Kaiser, A.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Kerr, N. C.

König, K.

Korn, G.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

Kreutz, E. W.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

Leng, N.

Li, X.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

Liu, P. J.

Lu, Y. F.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012).
[CrossRef]

Martín-Fabiani, I.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Mermillod-Blondin, A.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

Meshcheryakov, Y. P.

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

Miclea, M.

R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
[CrossRef]

Neumeier, M.

Pérez, S.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Pigeon, F.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Qu, L. T.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Rebollar, E.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Reif, J.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Rethfeld, B.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

Reynaud, S.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

Riemann, I.

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

Roslaniec, Z.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Rueda, D. R.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Sauer, D.

Schuck, H.

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Siegman, A. E.

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982).
[CrossRef]

Simon, G.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

Sipe, J. E.

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Stoian, R.

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

Stracke, F.

Szymczyk, A.

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

Thoss, A.

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

Tiedje, H. F.

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

Tsai, H. L.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005).
[CrossRef]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

Ulmeanu, M.

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

van Driel, H. M.

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Varlamova, O.

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Velten, T.

Vicanek, M.

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

Wagner, R.

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

Wang, C.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Xiao, H.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012).
[CrossRef]

Xu, C. C.

Xu, N. S.

Xu, Z. Z.

Yan, X. L.

Young, J. F.

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

Yuan, Y. P.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Zamfirescu, M.

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

Zhao, F. L.

Zimmermann, H.

Appl. Opt. (1)

Appl. Phys. A (2)

Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).

Appl. Phys. Lett. (4)

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[CrossRef]

E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007).
[CrossRef]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013).
[CrossRef]

P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982).
[CrossRef]

Appl. Surf. Sci. (1)

O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006).
[CrossRef]

J. Appl. Phys. (3)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012).
[CrossRef]

J. Heat Transfer (1)

L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005).
[CrossRef]

J. Phys. D (1)

Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012).
[CrossRef]

Langmuir (1)

I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012).
[CrossRef]

Nanotechnology (2)

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (4)

A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008).
[CrossRef]

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006).
[CrossRef]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000).
[CrossRef]

A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982).
[CrossRef]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef]

H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006).
[CrossRef]

Proc. SPIE (1)

R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004).
[CrossRef]

Other (1)

C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of laser intensity distribution: pulse separation between the first two pulses (Δt1) and the pulse separation between the last two pulses (Δt2).

Fig. 2.
Fig. 2.

Distributions of intensities and free electron densities at various pulse separation times (Δt1 the first two pulses): (a), (b) 50 fs pulse separation time; (c), (d) 75 fs pulse separation time; (e), (f) 100 fs pulse separation time.

Fig. 3.
Fig. 3.

Special distributions of free electron density at the end of laser pulse train irradiation at various pulse separation times (Δt1, the first two pulses): (a) 50 fs pulse separation time, (b) 75 fs pulse separation time, and (c) 100 fs pulse separation time. The dashed lines trace the locations with the critical density.

Fig. 4.
Fig. 4.

Distributions of intensities and free electron densities at various pulse separation times (Δt2 the last two pulses): (a), (b) 75 fs pulse separation time; (c), (d) 100 fs pulse separation time.

Fig. 5.
Fig. 5.

Special distributions of free electron density at the end of laser pulse train irradiation at various pulse separation times (Δt2, the last two pulses): (a) 75 fs pulse separation time and (b) 100 fs pulse separation time. The dashed lines trace the locations with the critical density.

Fig. 6.
Fig. 6.

Special distributions of free electron density at the end of laser pulse train irradiation at various pulse numbers with in the same total laser intensity: (a) a single pulse per train and (b) two pulses per train. The dashed lines trace the locations with the critical density (1.74×1021cm3).

Tables (1)

Tables Icon

Table 1. Free Electron Density at r=0μm, z=0nm for Different Laser Pulse Trains

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H⃗i(t,r,z)=H0exp(2ln2t2tp2r2r02)exp(α(t,r,z)z)exp(i(krr+kzz)iwt),
I(t,r,z)=|E⃗(t,r,z)×H⃗(t,r,z)|.
ne(t,r,z)t=αiI(t,r,z)ne(t,r,z)+δN(I(t,r,z))Nne(t,r,z)τ,
ε(t,r,z)=ε1(t,r,z)+iε2(t,r,z)=1ωp2(ne)τe21+ω2τe2+i(ωp2(ne)τe2ω(1+ω2τe2)),
τe=1νe=13×106lnΛ(ne(t,z)ZTev32(t,z))+(meM)12UIPTlTD(ncrne(t,r,z))13,
Ce(Te,ne)ne(t,r,z)Te(t,r,z)t=αh(t,r,z)I(t,r,z),
ε=knkεkNe=01eβ(Te)(εμ(ne,Te))+1ρ(ε)εdε01eβ(Te)(εμ(ne,Te))+1ρ(ε)dε,
μ(ne,T)=εF(ne)[113(πkBTe(t,r,z)2εF(ne))2],

Metrics