Abstract

In many applications, the emitting light from light-emitting diodes (LEDs) with different colors needs to be mixed together on a large-scale plane, and this illumination mode is usually generated with a diffuser. Abandoning the traditional methods, we proposed an LED color-mixing method that can produce both high color uniformity and irradiance uniformity illumination. This method is composed of two main aspects: arrangement of the irradiance array and design of the LED lens. With this method, an independent rectangular irradiance distribution is generated by each lens unit, and the large-scale color uniform illumination is obtained by arraying the irradiance distribution. A 3×3 array of LED module units consisting of 36 LED lens units with four different colors is designed, and a desired result with high color uniformity is obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cvetkovic, O. Dross, J. Chaves, P. Benitez, J. C. Miñano, and R. Mohedano, “Extendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive head-lamps,” Opt. Express 14, 13014–13020 (2006).
    [CrossRef]
  2. Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
    [CrossRef]
  3. D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
    [CrossRef]
  4. F. Chen, K. Wang, Z. Qin, D. Wu, X. B. Luo, and S. Liu, “Design method of high-efficient LED headlamp lens,” Opt. Express 18, 20926–20938 (2010).
    [CrossRef]
  5. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45, 2265–2272 (2006).
    [CrossRef]
  6. L. Ondic and I. Pelant, “Improvement of color and luminance uniformity of the edge-lit backlight using the RGB LEDs,” J. Opt. Soc. Korea 15, 272–277 (2011).
    [CrossRef]
  7. I. Keita and F. Ichiro, “Illumination uniformity of an edge-lit backlight with emission angle control,” Opt. Express 16, 11969–11974 (2008).
    [CrossRef]
  8. R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
    [CrossRef]
  9. F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).
  10. Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
    [CrossRef]
  11. I. Moreno and U. Contreras, “Color distribution from multicolor LED arrays,” Opt. Express 15, 3607–3618 (2007).
    [CrossRef]
  12. T. Kari, J. Gadegaard, D. T. Jørgensen, T. Søndergaard, T. G. Pedersen, and K. Pedersen, “Compact lens with circular spot profile for square die LEDs in multi-LED projectors,” Appl. Opt. 50, 4860–4867 (2011).
    [CrossRef]
  13. C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20, A75–A84 (2012).
    [CrossRef]
  14. C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.
  15. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [CrossRef]
  16. P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ Sci. C 13, 929–936 (2012).
    [CrossRef]
  17. R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257–2263 (2012).
    [CrossRef]

2012 (3)

2011 (4)

T. Kari, J. Gadegaard, D. T. Jørgensen, T. Søndergaard, T. G. Pedersen, and K. Pedersen, “Compact lens with circular spot profile for square die LEDs in multi-LED projectors,” Appl. Opt. 50, 4860–4867 (2011).
[CrossRef]

L. Ondic and I. Pelant, “Improvement of color and luminance uniformity of the edge-lit backlight using the RGB LEDs,” J. Opt. Soc. Korea 15, 272–277 (2011).
[CrossRef]

D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
[CrossRef]

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

2010 (2)

2008 (2)

2007 (1)

2006 (2)

2003 (1)

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

2002 (1)

F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).

Avendaño-Alejo, M.

Benitez, P.

Chan, C. E.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Chaves, J.

Chen, F.

Chien, W. T.

Chiu, B. C.

Cho, D.

D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
[CrossRef]

Contreras, U.

Cvetkovic, A.

Davis, W. L.

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Derlofske, J. V.

F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).

Ding, Y.

Dowling, K.

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Dross, O.

Eberle, S.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Feng, Z. X.

Gadegaard, J.

Gu, P. F.

Han, Y. J.

Harbers, G.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Ichiro, F.

Jia, G. X.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

Jørgensen, D. T.

Kari, T.

Keita, I.

Li, H. F.

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257–2263 (2012).
[CrossRef]

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ Sci. C 13, 929–936 (2012).
[CrossRef]

Li, H. T.

Liu, P.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ Sci. C 13, 929–936 (2012).
[CrossRef]

Liu, S.

Liu, X.

Lo, Y. C.

Luo, X. B.

Luo, Y.

Miller, C. C.

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Miñano, J. C.

Mohedano, R.

Moon, G. W.

D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
[CrossRef]

Moreno, I.

Narendran, N.

F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).

Oh, W.

D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
[CrossRef]

Ohno, Y.

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Ondic, L.

Ouyang, J. F.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

Pedersen, K.

Pedersen, T. G.

Pelant, I.

Qin, Z.

Qu, X. H.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

Søndergaard, T.

Sun, C. C.

Takaaki, Y.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Tan, T. W.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Tzonchev, R. I.

Wang, K.

West, R. S.

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Wu, D.

Wu, R. M.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ Sci. C 13, 929–936 (2012).
[CrossRef]

R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257–2263 (2012).
[CrossRef]

Zhao, F.

F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).

Zheng, Z. R.

Zhu, Z. M.

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

Zong, Y. Q.

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Appl. Opt. (3)

J. Disp. Technol. (2)

D. Cho, W. Oh, and G. W. Moon, “A novel adaptive dimming LED backlight system with current compensated X–Y channel drivers for LCD TVs,” J. Disp. Technol. 7, 29–35 (2011).
[CrossRef]

Z. M. Zhu, X. H. Qu, G. X. Jia, and J. F. Ouyang, “Uniform illumination design by configuration of LED array and diffuse reflection surface for color vision application,” J. Disp. Technol. 7, 84–89 (2011).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Zhejiang Univ Sci. C (1)

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ Sci. C 13, 929–936 (2012).
[CrossRef]

Opt. Express (7)

Proc. SPIE (1)

F. Zhao, N. Narendran, and J. V. Derlofske, “Optical elements for mixing colored LEDs to create white light,” Proc. SPIE 4776, 206–214 (2002).

SID 03 Digest (1)

R. S. West, Y. Takaaki, S. Eberle, G. Harbers, T. W. Tan, and C. E. Chan, “High brightness direct LED backlight for LCD-TV,” SID 03 Digest 34, 1262–1265 (2003).
[CrossRef]

Other (1)

C. C. Miller, Y. Ohno, W. L. Davis, Y. Q. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), p. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Principle of color shadow, (b) principle of color pattern, and (c) LED ceiling constructed by Zhejiang University.

Fig. 2.
Fig. 2.

(a) Color-mixing scheme I and (b) color-mixing scheme II.

Fig. 3.
Fig. 3.

(a) Scheme I and (b) scheme II. The red/blue circle represents the red/blue LED and the corresponding red/blue rectangle with dashes is its IAU. Each green rectangle is one LED module unit, while the rectangle in gray is the CMA for the corresponding scheme.

Fig. 4.
Fig. 4.

Comparison on CME of scheme I and scheme II.

Fig. 5.
Fig. 5.

Flow chart of the optimization process.

Fig. 6.
Fig. 6.

Geometry relationship between freeform surface and target illumination.

Fig. 7.
Fig. 7.

Detailed mapping method.

Fig. 8.
Fig. 8.

Schematic of merit function determination.

Fig. 9.
Fig. 9.

Model of optimized freeform lens.

Fig. 10.
Fig. 10.

(a) Irradiance distribution by a 2×2 array of initial LED lens units. (b) Irradiance distribution by a 2×2 array of optimized LED lens units.

Fig. 11.
Fig. 11.

Color-mixing results generated by a 3×3 array of LED module units.

Tables (1)

Tables Icon

Table 1. Design Parameters of TIR Lens

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CME1=2×(m2)×(n2)2×(m2)×(n2)+m+n.
CME2=16×(m1)×(n1)4×(m+n)+916×(m1)×(n1).
CME1=(N2)2(N2)2+N.
CME2=(4N5)216×(N1)2.
{ρφ=ρ(θ,φ)×sinφ×(no×oznI×Iz)cosφ×Acosφ×(no×oznI×Iz)+sinφ×Aρφ=ρ(θ,φ)×sinφ×sinθ×(no×oxnI×Ix)cosθ×(no×oynI×Iy)cosφ×(no×oznI×Iz)+sinφ×A.
{xt=dsinφ/(2sinφmax),yt=2dθsinφ/(πsinφmax)0θπ/4xt=dsinφ(12θ/π)/(sinφmax),yt=dsinφ/(2sinφmax)π/4θπ/2,
RSD=1M1i=1M(EiE¯1)2,
Δxy=1MiM[(xix¯)2+(yiy¯)2],

Metrics