Abstract

In this paper a compact, yet sensitive gas detection system based on a modulated, tunable thulium-doped fiber laser in the 2 μm wavelength region is reported. The laser operating wavelength range centered at a wavelength of 1.995 μm has been selected to access the R(50) transition (ν1+2ν2+ν3) of CO2 based on its line strength and to achieve isolation from interfering high-temperature water absorption features. The laser linewidth and tuning range are optimized accordingly. The modulation of the fiber laser, achieved through pump source modulation and a locking detection mechanism, has been utilized to stabilize the laser system and therefore to create a compact gas sensor with high sensitivity. The absorption spectrum, as well as the line strength and the concentration level of CO2, have been monitored through absorption spectroscopy techniques. The measured minimum detectable concentration of CO2 obtained using the system shows that it is quite capable of detecting trace gas at the ppm (parts in 106) level. The stable laser performance achieved in the sensor system illustrates its potential for the development of practical, compact, yet sensitive fiber-laser-based gas sensor systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Stewart, “Technology,” in Optical Fiber Sensors, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer Academic, 1999), Chap. 5, pp. 87–112.
  2. G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
    [CrossRef]
  3. Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
    [CrossRef]
  4. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
    [CrossRef]
  5. P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
    [CrossRef]
  6. A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
    [CrossRef]
  7. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, “In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 μm,” Appl. Opt. 40, 821–828 (2001).
    [CrossRef]
  8. V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011).
    [CrossRef]
  9. G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tunable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
    [CrossRef]
  10. HITRAN2008 database, http://www.cfa.harvard.edu/hitran/vibrational.html .
  11. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27, 1989–1991 (2002).
    [CrossRef]
  12. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K T. V. Grattan, “‘All-fiber’ tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51, 7011–7015 (2012).
    [CrossRef]
  13. N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy, 2nd ed. (Plenum, 1970), p. 303.
  14. J. Mulrooney, “An optical fibre sensor for the measurement of carbon dioxide exhaust emissions from land transport vehicles,” Ph.D. thesis (University of Limerick, 2006).
  15. A. E. Siegman, Lasers (University Science Books, 1986), pp. 957, 502.
  16. S. Michelsen, “Optical fiber grating based sensors,” Ph.D. thesis (Technical University of Denmark, 2003).
  17. A. N. Pisarchik and Yu. O. Barmenkov, “Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser,” Opt. Commun. 254, 128–137 (2005).
    [CrossRef]

2012 (1)

2011 (1)

V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011).
[CrossRef]

2006 (1)

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

2005 (1)

A. N. Pisarchik and Yu. O. Barmenkov, “Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser,” Opt. Commun. 254, 128–137 (2005).
[CrossRef]

2004 (4)

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tunable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Alpert, N. L.

N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy, 2nd ed. (Plenum, 1970), p. 303.

Baer, D. S.

Barmenkov, Yu. O.

A. N. Pisarchik and Yu. O. Barmenkov, “Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser,” Opt. Commun. 254, 128–137 (2005).
[CrossRef]

Barnes, N. P.

Boucher, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Bremer, K.

Chen, W.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Clarkson, W. A.

Cousin, J.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Culshaw, B.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tunable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

D’Amato, F.

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

De Natale, G.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

De Natale, P.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

Demokan, M. S.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Fang, X. H.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Gagliardi, G.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

Gianfrani, L.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

Grattan, K T. V.

Hanna, D. C.

Hanson, R. K.

Ho, H. L.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Ikeda, Y.

Jin, W.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Kassi, S.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011).
[CrossRef]

Keiser, W. E.

N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy, 2nd ed. (Plenum, 1970), p. 303.

Kim, S.

Lancia, T.

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Lewis, E.

Marshall, J.

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Martin, P. A.

V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011).
[CrossRef]

Masselin, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Michelsen, S.

S. Michelsen, “Optical fiber grating based sensors,” Ph.D. thesis (Technical University of Denmark, 2003).

Mücke, R.

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Mulrooney, J.

J. Mulrooney, “An optical fibre sensor for the measurement of carbon dioxide exhaust emissions from land transport vehicles,” Ph.D. thesis (University of Limerick, 2006).

Nilsson, J.

Pal, A.

Pisarchik, A. N.

A. N. Pisarchik and Yu. O. Barmenkov, “Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser,” Opt. Commun. 254, 128–137 (2005).
[CrossRef]

Rocco, A.

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

Romanini, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Sanders, S. T.

Sen, R.

Shields, P.

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986), pp. 957, 502.

Stewart, G.

G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tunable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

G. Stewart, “Technology,” in Optical Fiber Sensors, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer Academic, 1999), Chap. 5, pp. 87–112.

Sun, T.

Szriftgiser, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

Szymanski, H. A.

N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy, 2nd ed. (Plenum, 1970), p. 303.

Turner, P. W.

Webber, M. E.

Werle, P.

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

Whitenett, G.

G. Whitenett, G. Stewart, H. Yu, and B. Culshaw, “Investigation of a tunable mode locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22, 813–819 (2004).
[CrossRef]

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Yao, S.

Yu, H.

Zhang, M.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped finer laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83, 261–266 (2006).
[CrossRef]

P. Werle, R. Mücke, F. D’Amato, and T. Lancia, “Near-infrared trace-gas sensors based on room-temperature diode lasers,” Appl. Phys. B 67, 307–315 (1998).
[CrossRef]

A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235–240 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Commun. 234, 435–441 (2004).
[CrossRef]

A. N. Pisarchik and Yu. O. Barmenkov, “Locking of self-oscillation frequency by pump modulation in an erbium-doped fiber laser,” Opt. Commun. 254, 128–137 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, “Design of fiber laser and sensor systems for gas spectroscopy in the near-IR,” Proc. SPIE 172, 172–180 (2004).
[CrossRef]

Sens. Actuators B (1)

V. L. Kasyutich and P. A. Martin, “A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser,” Sens. Actuators B 157, 635–640 (2011).
[CrossRef]

Other (6)

HITRAN2008 database, http://www.cfa.harvard.edu/hitran/vibrational.html .

G. Stewart, “Technology,” in Optical Fiber Sensors, K. T. V. Grattan and B. T. Meggitt, eds. (Kluwer Academic, 1999), Chap. 5, pp. 87–112.

N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy, 2nd ed. (Plenum, 1970), p. 303.

J. Mulrooney, “An optical fibre sensor for the measurement of carbon dioxide exhaust emissions from land transport vehicles,” Ph.D. thesis (University of Limerick, 2006).

A. E. Siegman, Lasers (University Science Books, 1986), pp. 957, 502.

S. Michelsen, “Optical fiber grating based sensors,” Ph.D. thesis (Technical University of Denmark, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

ASE spectrum from Tm-doped fiber overlapped with the absorption spectrum of CO2. Inset, Higher resolution spectra of CO2 showing absorption line strength on the y axis.

Fig. 2.
Fig. 2.

Schematic of the gas sensor system using the Tm-doped tunable fiber laser (HR, high-reflective FBG; LR, low-reflective FBG; BBS, broadband source).

Fig. 3.
Fig. 3.

Laser output spectrum and variation of laser output power at 1.995 μm with the setpoint voltage of the forward 0.98 μm pump source laser driver.

Fig. 4.
Fig. 4.

Transient behavior of Tm-doped fiber laser.

Fig. 5.
Fig. 5.

Modulated intensity of the Tm-doped fiber laser at 1.995 μm.

Fig. 6.
Fig. 6.

Linear relationship between the center wavelength of the tunable laser at 1.995 μm and the Bragg wavelength of reference FBG at 1.584 μm.

Fig. 7.
Fig. 7.

Stability of the Tm-doped fiber laser based gas sensor system over time at 1.996 μm.

Fig. 8.
Fig. 8.

Measured amplitudes of the modulated tunable Tm-doped fiber laser exposed in the gas cell.

Fig. 9.
Fig. 9.

Measured amplitudes Am of the modulated Tm-doped fiber laser (at 1.9975 and 1.9979 μm) with CO2 gas concentration.

Tables (1)

Tables Icon

Table 1. Absorption Bands of CO2 in IR Region

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(λ)=I0(λ)exp[LNσ(λ)],
y(t)=A0+Amsin(2πfmt)
Nmin=ln(11SNR)σ·L.

Metrics