Abstract

The effects of surface roughness on the light transmission properties and sensitivity of fiber-optic evanescent wave sensors are investigated. A simple method of increasing the sensitivity based on the surface roughness (pit depth δ and diameter Δ) and incident angle Ui of light rays on the fiber input end is proposed. We discovered that as 2δ/Δ increases, the transmitted light intensity decreases, but the sensitivity initially increases and then decreases. In sensors containing fibers of various roughnesses, the sensitivity to glucose solutions reached 11.7mW/riu at 2δ/Δ=0.32 and increased further to 15.3mW/riu with proper adjustment of Ui.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Jalal, J. S. Yu, and A. G. A. Nnanna, “Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water,” Appl. Opt. 51, 3768–3775 (2012).
    [CrossRef]
  2. C. L. Linslal, P. M. S. Mohan, A. Halder, and T. K. Gangopadhyay, “Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor,” Appl. Opt. 51, 3445–3452 (2012).
    [CrossRef]
  3. Z. J. Zhao and Y. X. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B 160, 1340–1345 (2011).
    [CrossRef]
  4. P. Lu, J. Harris, X. Z. Wang, G. B. Lin, L. Chen, and X. Y. Bao, “Tapered-fiber-based refractive index sensor at an air/solution interface,” Appl. Opt. 51, 7368–7373 (2012).
    [CrossRef]
  5. A. Messica, A. Greenstein, and A. Katzir, “Theory of fiber-optic, evanescent-wave spectroscopy and sensors,” Appl. Opt. 35, 2274–2284 (1996).
    [CrossRef]
  6. R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
    [CrossRef]
  7. R. Aneesh and S. K. Khijwania, “Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity,” Appl. Opt. 51, 2164–2171 (2012).
    [CrossRef]
  8. C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B 146, 190–194 (2010).
    [CrossRef]
  9. B. D. Gupta and N. K. Sharma, “Fabrication and characterization of U-shaped fiber-optic pH probes,” Sens. Actuators B 82, 89–93 (2002).
    [CrossRef]
  10. G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
    [CrossRef]
  11. P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51, 3004–3006 (2009).
    [CrossRef]
  12. M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20, 1312–1319 (2005).
    [CrossRef]
  13. S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
    [CrossRef]
  14. A. Prabhakar and S. Mukherji, “Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides,” Sens. Actuators B 171–172, 1303–1311 (2012).
    [CrossRef]
  15. C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
    [CrossRef]
  16. M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
    [CrossRef]
  17. A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
    [CrossRef]
  18. Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
    [CrossRef]
  19. S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
    [CrossRef]
  20. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
    [CrossRef]
  21. J. H. Kuang, P. C. Chen, and Y. C. Chen, “Optical performance of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers,” Appl. Opt. 51, 4448–4456 (2012).
    [CrossRef]
  22. X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).
  23. N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
    [CrossRef]
  24. R. G. Llamas and L. E. Regalado, “Transmitted scattered light from a thin film with shallow random rough interfaces,” Appl. Opt. 35, 5595–5599 (1996).
    [CrossRef]
  25. Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
    [CrossRef]
  26. S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
    [CrossRef]
  27. N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
    [CrossRef]
  28. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
    [CrossRef]
  29. Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
    [CrossRef]
  30. J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
    [CrossRef]
  31. N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
    [CrossRef]
  32. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef]

2013 (1)

2012 (10)

J. H. Kuang, P. C. Chen, and Y. C. Chen, “Optical performance of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers,” Appl. Opt. 51, 4448–4456 (2012).
[CrossRef]

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

A. H. Jalal, J. S. Yu, and A. G. A. Nnanna, “Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water,” Appl. Opt. 51, 3768–3775 (2012).
[CrossRef]

C. L. Linslal, P. M. S. Mohan, A. Halder, and T. K. Gangopadhyay, “Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor,” Appl. Opt. 51, 3445–3452 (2012).
[CrossRef]

P. Lu, J. Harris, X. Z. Wang, G. B. Lin, L. Chen, and X. Y. Bao, “Tapered-fiber-based refractive index sensor at an air/solution interface,” Appl. Opt. 51, 7368–7373 (2012).
[CrossRef]

R. Aneesh and S. K. Khijwania, “Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity,” Appl. Opt. 51, 2164–2171 (2012).
[CrossRef]

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

A. Prabhakar and S. Mukherji, “Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides,” Sens. Actuators B 171–172, 1303–1311 (2012).
[CrossRef]

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[CrossRef]

S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
[CrossRef]

2011 (4)

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

Z. J. Zhao and Y. X. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B 160, 1340–1345 (2011).
[CrossRef]

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

2010 (2)

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B 146, 190–194 (2010).
[CrossRef]

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

2009 (2)

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51, 3004–3006 (2009).
[CrossRef]

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

2008 (1)

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

2007 (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

2006 (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

2005 (2)

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20, 1312–1319 (2005).
[CrossRef]

2002 (1)

B. D. Gupta and N. K. Sharma, “Fabrication and characterization of U-shaped fiber-optic pH probes,” Sens. Actuators B 82, 89–93 (2002).
[CrossRef]

2000 (1)

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

1999 (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

1998 (1)

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

1996 (2)

1991 (1)

1971 (1)

Ahmad, H.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Ahmad, M.

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20, 1312–1319 (2005).
[CrossRef]

Aneesh, R.

Arora, V.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Bao, X. Y.

Benito-Peña, E.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

Bottacini, M.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

Buosciolo, A.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

Burani, N.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

Chang, T. L.

S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
[CrossRef]

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

Chen, L.

Chen, P. C.

Chen, R.

N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
[CrossRef]

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Chen, Y. C.

Cheong, Y. K.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Chong, W. Y.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Colin, F.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Consales, M.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

Crescitelli, A.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

Cusano, A.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

Cutolo, A.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

D’Ambrosio, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Duan, Y. X.

Z. J. Zhao and Y. X. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B 160, 1340–1345 (2011).
[CrossRef]

Eldridge, P.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Esteban, Ó.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B 146, 190–194 (2010).
[CrossRef]

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Foroni, M.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

Gangopadhyay, T. K.

Giordano, M.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

Gloge, D.

González-Cano, A.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

Grapin, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Greenstein, A.

Guo, X. Q.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

Gupta, B. D.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

B. D. Gupta and N. K. Sharma, “Fabrication and characterization of U-shaped fiber-optic pH probes,” Sens. Actuators B 82, 89–93 (2002).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Halder, A.

Harris, J.

Hench, L. L.

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20, 1312–1319 (2005).
[CrossRef]

Heo, J.

Herrera, N. D.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

Hou, H. Q.

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

Jalal, A. H.

Jonca, M. G.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Kadim, H. J.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Katzir, A.

Khijwania, S. K.

R. Aneesh and S. K. Khijwania, “Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity,” Appl. Opt. 51, 2164–2171 (2012).
[CrossRef]

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Kuang, J. H.

Liao, Q.

N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
[CrossRef]

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Lim, K. S.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Lim, W. H.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Lin, G. B.

Linslal, C. L.

Liu, Y.

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

Llamas, R. G.

Lu, P.

Luo, S. W.

S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
[CrossRef]

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Messica, A.

Mohan, P. M. S.

Mukherji, S.

A. Prabhakar and S. Mukherji, “Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides,” Sens. Actuators B 171–172, 1303–1311 (2012).
[CrossRef]

Nath, P.

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51, 3004–3006 (2009).
[CrossRef]

Navarrete, M. C.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

Nnanna, A. G. A.

Orellana, G.

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

Philip-Chandy, R.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Poli, F.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

Prabhakar, A.

A. Prabhakar and S. Mukherji, “Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides,” Sens. Actuators B 171–172, 1303–1311 (2012).
[CrossRef]

Pulido, C.

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B 146, 190–194 (2010).
[CrossRef]

Quero, G.

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

Regalado, L. E.

Rodrigues, M.

Saggese, S. J.

Saito, T.

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[CrossRef]

Sakamoto, A.

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[CrossRef]

Sapra, S.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

Scully, P. J.

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Selleri, S.

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

Sharma, N. K.

B. D. Gupta and N. K. Sharma, “Fabrication and characterization of U-shaped fiber-optic pH probes,” Sens. Actuators B 82, 89–93 (2002).
[CrossRef]

Sigel, G. H.

Srivastava, S. K.

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

Teng, H.

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

Tsai, H. Y.

S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
[CrossRef]

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

Wang, D. Y.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

Wang, S. R.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

Wang, X. Z.

Wang, Y. Z.

N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
[CrossRef]

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Wu, W. T.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

Wu, Y. H.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

Xu, J. G.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

Xuan, M.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

You, T. Y.

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

Yu, J. S.

Zakaria, R.

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Zhao, Y. B.

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

Zhao, Z. J.

Z. J. Zhao and Y. X. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B 160, 1340–1345 (2011).
[CrossRef]

Zhong, N. B.

N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
[CrossRef]

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Zhu, X.

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Zhuang, X. Y.

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

Appl. Opt. (10)

A. H. Jalal, J. S. Yu, and A. G. A. Nnanna, “Fabrication and calibration of Oxazine-based optic fiber sensor for detection of ammonia in water,” Appl. Opt. 51, 3768–3775 (2012).
[CrossRef]

C. L. Linslal, P. M. S. Mohan, A. Halder, and T. K. Gangopadhyay, “Eigenvalue equation and core-mode cutoff of weakly guiding tapered fiber as three layer optical waveguide and used as biochemical sensor,” Appl. Opt. 51, 3445–3452 (2012).
[CrossRef]

P. Lu, J. Harris, X. Z. Wang, G. B. Lin, L. Chen, and X. Y. Bao, “Tapered-fiber-based refractive index sensor at an air/solution interface,” Appl. Opt. 51, 7368–7373 (2012).
[CrossRef]

A. Messica, A. Greenstein, and A. Katzir, “Theory of fiber-optic, evanescent-wave spectroscopy and sensors,” Appl. Opt. 35, 2274–2284 (1996).
[CrossRef]

R. Aneesh and S. K. Khijwania, “Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity,” Appl. Opt. 51, 2164–2171 (2012).
[CrossRef]

J. H. Kuang, P. C. Chen, and Y. C. Chen, “Optical performance of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers,” Appl. Opt. 51, 4448–4456 (2012).
[CrossRef]

R. G. Llamas and L. E. Regalado, “Transmitted scattered light from a thin film with shallow random rough interfaces,” Appl. Opt. 35, 5595–5599 (1996).
[CrossRef]

N. B. Zhong, Q. Liao, Y. Z. Wang, and R. Chen, “High-quality fiber fabrication in buffered HF solution with ultrasonic agitation,” Appl. Opt. 52, 1432–1440 (2013).
[CrossRef]

J. Heo, M. Rodrigues, S. J. Saggese, and G. H. Sigel, “Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers,” Appl. Opt. 30, 3944–3951 (1991).
[CrossRef]

D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971).
[CrossRef]

Biosens. Bioelectron. (2)

Y. Liu, H. Teng, H. Q. Hou, and T. Y. You, “Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,” Biosens. Bioelectron. 24, 3329–3334 (2009).
[CrossRef]

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20, 1312–1319 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Philip-Chandy, P. J. Scully, P. Eldridge, H. J. Kadim, M. G. Grapin, M. G. Jonca, M. G. D’Ambrosio, and F. Colin, “An optical fiber sensor for biofilm measurement using intensity modulation and image analysis,” IEEE J. Sel. Top. Quantum Electron. 6, 764–772 (2000).
[CrossRef]

Microw. Opt. Technol. Lett. (2)

M. Bottacini, N. Burani, M. Foroni, F. Poli, and S. Selleri, “All-plastic optical-fiber level sensor,” Microw. Opt. Technol. Lett. 46, 520–522 (2005).
[CrossRef]

P. Nath, “Enhanced sensitive fiber-optic sensor with double pass evanescent field absorption,” Microw. Opt. Technol. Lett. 51, 3004–3006 (2009).
[CrossRef]

Opt. Laser Eng. (3)

X. Y. Zhuang, Y. H. Wu, S. R. Wang, and M. Xuan, “Optical fiber evanescent field sensor based on new type D-shaped fiber,” Opt. Laser Eng. 16, 1936–1941 (2008).

N. D. Herrera, Ó. Esteban, M. C. Navarrete, A. González-Cano, E. Benito-Peña, and G. Orellana, “Improved performance of SPR sensors by a chemical etching of tapered optical fibers,” Opt. Laser Eng. 49, 1065–1068 (2011).
[CrossRef]

S. W. Luo, T. L. Chang, and H. Y. Tsai, “Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process,” Opt. Laser Eng. 50, 220–225 (2012).
[CrossRef]

Opt. Precis. Eng. (1)

N. B. Zhong, Q. Liao, X. Zhu, Y. Z. Wang, and R. Chen, “Application of ultrasonic technology to etching silica optical fiber,” Opt. Precis. Eng. 20, 988–995 (2012).
[CrossRef]

Opt. Quantum Electron. (1)

S. K. Khijwania and B. D. Gupta, “Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe,” Opt. Quantum Electron. 31, 625–636 (1999).
[CrossRef]

Plasmonics (1)

S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics 7, 261–268 (2012).
[CrossRef]

Rev. Sci. Instrum. (2)

A. Sakamoto and T. Saito, “Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement,” Rev. Sci. Instrum. 83, 075107 (2012).
[CrossRef]

Y. K. Cheong, K. S. Lim, W. H. Lim, W. Y. Chong, R. Zakaria, and H. Ahmad, “Fabrication of tapered fibre tip using mechanical polishing method,” Rev. Sci. Instrum. 82, 086115 (2011).
[CrossRef]

Sci. China Ser. B (1)

Y. B. Zhao, D. Y. Wang, X. Q. Guo, and J. G. Xu, “A new spectrum technique based on direct detection of light intensity absorbed,” Sci. China Ser. B 41, 239–246 (1998).
[CrossRef]

Sens. Actuators A (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, “Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching,” Sens. Actuators A 138, 248–260 (2007).
[CrossRef]

Sens. Actuators B (6)

A. Prabhakar and S. Mukherji, “Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides,” Sens. Actuators B 171–172, 1303–1311 (2012).
[CrossRef]

Z. J. Zhao and Y. X. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sens. Actuators B 160, 1340–1345 (2011).
[CrossRef]

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B 146, 190–194 (2010).
[CrossRef]

B. D. Gupta and N. K. Sharma, “Fabrication and characterization of U-shaped fiber-optic pH probes,” Sens. Actuators B 82, 89–93 (2002).
[CrossRef]

G. Quero, A. Crescitelli, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B 152, 196–205 (2011).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,” Sens. Actuators B 120, 231–237 (2006).
[CrossRef]

Sensors (1)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of light transmission in fiber with smooth surface.

Fig. 2.
Fig. 2.

Schematic diagram of light transmission in fiber with rough surface.

Fig. 3.
Fig. 3.

SEM images (3.00k×) of unclad fibers [27,31].

Fig. 4.
Fig. 4.

Schematic diagram of sensor measurement system.

Fig. 5.
Fig. 5.

Effect of 2δ/Δ on the transmitted light intensity.

Fig. 6.
Fig. 6.

Simulated curves of effective decay coefficient ξ(n), effective penetration depth Dp, and effective optical path length Lew of evanescent waves versus 2δ/Δ.

Fig. 7.
Fig. 7.

(a) Functional relationship between transmitted light intensity and refractive index; (b) functional relationship between sensitivity and 2δ/Δ.

Fig. 8.
Fig. 8.

Functional relationship between sensor sensitivity and Ui.

Fig. 9.
Fig. 9.

Simulated curves: (a) shows angle θi versus angle Ui, (b) shows total reflection critical angle θc versus refraction index of glucose solutions n.

Tables (2)

Tables Icon

Table 1. Fiber Surface Roughness Parameters

Tables Icon

Table 2. Parameters Used in the Simulation

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Iout=Iineξ(n)L,
ξ(n)=αλncosθicotθi2πrnr2cosθc(cos2θccos2θisin2θφ)1/2,
ξ(n)=nαλ2rπ(nr2n2)cosθicotθi.
Iout=Iinexp[nαλL2rπ(nr2n2)cosθicotθi].
Iout=Iinexp[αλLrπnr2(n+n3nr2)cosθicotθi].
θi=θiΩ=θiarctan(2δ/Δ),
δ=i=1NhiNandΔ=i=1NDiN,
θi=π2arcsin(n0nrsinUi),
θi=π2arcsin(n0nrsinUi)arctan(2δ/Δ),
Iin=arcsin(NA)arcsin(NA)Iin=UmaxUmaxIin=Umaxarcsin{nmaxnsin[δ2rarctan(2δ/Δ)]}UmaxIin.
Iout=Umaxarcsin{nmaxnsin[δ2rarctan(2δ/Δ)]}UmaxIineξ(n)L,
Iew=IinIoutISR=f(Iin,2δ/Δ).
ξ(n)=αλrπ(nr)2(n+n3(nr)2)·cos2[π2arcsin(n0nrsinUi)arctan(2δ/Δ)]sin[π2arcsin(n0nrsinUi)arctan(2δ/Δ)].
Dp=λ2π[nr2sin2θin2]1/2.
Dp=λ2π{(nr)2sin2[π2arcsin(n0nrsinUi)arctan(2δ/Δ)]n2}1/2.
N=2Ll=L2rtanθi,
Lew=N2DptanθL=Lλ2πrtanθi[nr2sin2θin2]1/2tan[arcsin(nnrsinθi)].
Lew=Lλcot{arcsin[nnrsin(π2arcsin(n0nrsinUi)arctan(2δ/Δ))]}2π(rhi){(nr)2sin2[π2arcsin(n0nrsinUi)arctan(2δ/Δ)]n2}1/2tan[π2arcsin(n0nrsinUi)arctan(2δ/Δ)].
ηsensitivity=ΔIout(n)Δn=Iout(1.3335)Iout(1.3513)1.33351.3513.

Metrics