Abstract

Reflective imaging systems are typically limited to small field angles in order to avoid overly large obscurations or off-axis aberrations. Reflective optics are often preferred in astronomy due to the associated lower weight and cost, as well as the absence of chromatic aberrations. Although these advantages are compelling, off-axis aberrations typically limit the field of view to a few degrees, while many imaging applications require a considerably larger useful field of view. A hybrid optical-digital design could alleviate the issues associated with wide-field reflective optics by exploiting the larger design freedom inherent in such systems. In this paper we demonstrate how a holistic design approach can enable reflective imaging systems with a consistently sharp image across a wide field of view.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
    [CrossRef]
  2. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  3. J. Downing, E. Findlay, G. Muyo, and A. R. Harvey, “Multichanneled finite-conjugate imaging,” J. Opt. Soc. Am. A 29, 921–927 (2012).
    [CrossRef]
  4. G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
    [CrossRef]
  5. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett. 30, 2715–2717 (2005).
    [CrossRef]
  6. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef]
  7. S. Mezouari, G. Muyo, and A. R. Harvey, “Circularly symmetric phase filters for control of primary third-order aberrations: coma and astigmatism,” J. Opt. Soc. Am. A 23, 1058–1062 (2006).
    [CrossRef]
  8. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
    [CrossRef]
  9. E. J. Tremblay, R. A. Stack, R. L. Morrison, J. H. Karp, and J. E. Ford, “Ultrathin four-reflection imager,” Appl. Opt. 48, 343–354 (2009).
    [CrossRef]
  10. F. Yan and X. Zhang, “Optimization of an off-axis three-mirror anastigmatic system with wavefront coding technology based on MTF invariance,” Opt. Express 17, 16809–16819 (2009).
    [CrossRef]
  11. A. S. Leonard, The Yolo Reflector (OPTICA, 1965).
  12. A. Mackintosh, K. Hawkings, and F. Baar, Optics (Willmann-Bell, 1986).
  13. A. Kutter, Der Schiefspiegler (Springer-Verlag, 1953).
  14. G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
    [CrossRef]
  15. R. Wodnicki, G. W. Roberts, and M. D. Levine, “A foveated image sensor in standard CMOS technology,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1995), pp. 357–360.
  16. S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.
  17. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.
  18. T. Vettenburg, N. Bustin, and A. R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Opt. Express 18, 9220–9228 (2010).
    [CrossRef]
  19. D. Zalvidea and E. E. Sicre, “Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function,” Appl. Opt. 37, 3623–3627 (1998).
    [CrossRef]
  20. D. Zalvidea, C. Colautti, and E. E. Sicre, “Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function,” J. Opt. Soc. Am. A 17, 867–873 (2000).
    [CrossRef]
  21. S. Mezouari and A. R. Harvey, “Phase pupil functions for reduction of defocus and spherical aberrations,” Opt. Lett. 28, 771–773 (2003).
    [CrossRef]
  22. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875–877 (2001).
    [CrossRef]
  23. E. Ben-Eliezer, E. Marom, N. Konforti, and Z. Zalevsky, “Radial mask for imaging systems that exhibit high resolution and extended depths of field,” Appl. Opt. 45, 2001–2013 (2006).
    [CrossRef]
  24. R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).
  25. D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
    [CrossRef]
  26. A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vis. Res. 36, 2759–2770 (1996).
    [CrossRef]
  27. E. P. Simoncelli, “Statistical modeling of photographic images,” in Handbook of Image and Video Processing (Academic, 2005), pp. 431–441.

2012 (1)

2010 (1)

2009 (4)

2006 (2)

2005 (1)

2003 (1)

2001 (2)

2000 (1)

1998 (1)

1996 (1)

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vis. Res. 36, 2759–2770 (1996).
[CrossRef]

1995 (1)

1994 (1)

D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef]

1991 (1)

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

1972 (1)

G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

Andersson, M.

Baar, F.

A. Mackintosh, K. Hawkings, and F. Baar, Optics (Willmann-Bell, 1986).

Ben-Eliezer, E.

Bialek, W.

D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef]

Born, I.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Brady, D. J.

Bustin, N.

Cathey, W. T.

Chi, W.

Claeys, C. L.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Colautti, C.

Dario, P.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Debusschere, I.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Downing, J.

Dowski, E. R.

Driggers, R. G.

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).

Findlay, E.

Ford, J. E.

George, N.

Hagen, N.

Harvey, A. R.

Häusler, G.

G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

Hawkings, K.

A. Mackintosh, K. Hawkings, and F. Baar, Optics (Willmann-Bell, 1986).

Huckridge, D.

Ichioka, Y.

Ishida, K.

Karp, J. H.

Kondou, N.

Konforti, N.

Kreider, G.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Kumagai, T.

Kutter, A.

A. Kutter, Der Schiefspiegler (Springer-Verlag, 1953).

Leonard, A. S.

A. S. Leonard, The Yolo Reflector (OPTICA, 1965).

Levine, M. D.

R. Wodnicki, G. W. Roberts, and M. D. Levine, “A foveated image sensor in standard CMOS technology,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1995), pp. 357–360.

Mackintosh, A.

A. Mackintosh, K. Hawkings, and F. Baar, Optics (Willmann-Bell, 1986).

Marom, E.

Mezouari, S.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Morrison, R. L.

Muyo, G.

Pauca, V. P.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

Plemmons, R. J.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

Prasad, S.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

Roberts, G. W.

R. Wodnicki, G. W. Roberts, and M. D. Levine, “A foveated image sensor in standard CMOS technology,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1995), pp. 357–360.

Ruderman, D. L.

D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef]

Sandini, G.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Sicre, E. E.

Simoncelli, E. P.

E. P. Simoncelli, “Statistical modeling of photographic images,” in Handbook of Image and Video Processing (Academic, 2005), pp. 431–441.

Singh, A.

Stack, R. A.

Tanida, J.

Torgersen, T. C.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

Tremblay, E. J.

van der Gracht, J.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

van der Schaaf, A.

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vis. Res. 36, 2759–2770 (1996).
[CrossRef]

Van der Spiegel, J.

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

van Hateren, J. H.

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vis. Res. 36, 2759–2770 (1996).
[CrossRef]

Vettenburg, T.

Vollmerhausen, R. H.

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).

Wodnicki, R.

R. Wodnicki, G. W. Roberts, and M. D. Levine, “A foveated image sensor in standard CMOS technology,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1995), pp. 357–360.

Wood, A.

Yamada, K.

Yan, F.

Zalevsky, Z.

Zalvidea, D.

Zhang, X.

Appl. Opt. (5)

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. L. Ruderman and W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef]

Proc. SPIE (1)

G. Kreider, J. Van der Spiegel, I. Born, C. L. Claeys, I. Debusschere, G. Sandini, and P. Dario, “Design and characterization of a space-variant CCD sensor,” Proc. SPIE 1381, 242–249 (1991).
[CrossRef]

Vis. Res. (1)

A. van der Schaaf and J. H. van Hateren, “Modelling the power spectra of natural images: statistics and information,” Vis. Res. 36, 2759–2770 (1996).
[CrossRef]

Other (8)

E. P. Simoncelli, “Statistical modeling of photographic images,” in Handbook of Image and Video Processing (Academic, 2005), pp. 431–441.

R. Wodnicki, G. W. Roberts, and M. D. Levine, “A foveated image sensor in standard CMOS technology,” in Proceedings of the IEEE Custom Integrated Circuits Conference (IEEE, 1995), pp. 357–360.

S. Prasad, T. C. Torgersen, V. P. Pauca, R. J. Plemmons, and J. van der Gracht, “Engineering the pupil phase to improve image quality,” in Visual Information Processing XII (SPIE, 2003), pp. 1–12.

S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended-focus, aberration-corrected imaging systems,” in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV (SPIE, 2004), pp. 335–345.

R. H. Vollmerhausen and R. G. Driggers, Analysis of Sampled Imaging Systems (SPIE, 2000).

A. S. Leonard, The Yolo Reflector (OPTICA, 1965).

A. Mackintosh, K. Hawkings, and F. Baar, Optics (Willmann-Bell, 1986).

A. Kutter, Der Schiefspiegler (Springer-Verlag, 1953).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Wide-field design of a two-mirror Yolo reflector. Light enters along the Z axis and reflects of the primary spherical mirror (P) toward the secondary toroidal mirror (S), where it is focused on the orthogonally placed sensor array below. Gray areas indicate suggested light absorbing baffles.

Fig. 2.
Fig. 2.

MTFs at infinity (a), (b), and at 250 mm (c), (d), of the optical system optimized without (a), (c), and with a cubic surface-sag modulation (b), (d). The transfer function is shown for a point on the door near the center of the field of view (solid black curve), and for the top-right corner of the field of view (dotted green line). The horizontal and vertical MTFs are indicated with thick and thin lines, respectively.

Fig. 3.
Fig. 3.

Wide-field images simulated for (a) conventionally optimized reflective imaging system and (b) holistically optimized design, taking into account digital postprocessing. Magnifications are shown for details of the door at the center and at an extreme field angle. The same linear image deconvolution algorithm is applied for both systems; however, image sharpness of the column chapiter is only obtained for the holistically optimized design.

Metrics