Abstract

Lasers for use in space-borne applications require ultrahigh efficiency due to limited heat dissipation and power generation capacity. In particular, interplanetary optical communication systems require high-efficiency, moderate-power (>4W) optical transmitters in the 1600 nm wavelength range. Resonantly pumped dual-clad erbium-doped fiber lasers are best suited for this purpose. Parametric numerical optimizations are performed using a two-level propagation model modified to include spatial effects specific to large-mode-area fibers. Propagation loss mechanisms are found to be limiting factors due to the relatively low cross-sections and low quenching-free doping densities of erbium. Although experimental reports have demonstrated efficiencies up to 33%, simulation results indicate that over 53% power-conversion efficiency can be achieved using commercial fibers, and over 75% can be achieved using custom fibers employing propagation-loss mitigation strategies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
    [CrossRef]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  3. R. S. Quimby, “Output saturation in a 980 nm pumped erbium-doped fiber amplifier,” Appl. Opt. 30, 2546–2552 (1991).
    [CrossRef]
  4. P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
    [CrossRef]
  5. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
    [CrossRef]
  6. S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.
  7. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35, 3069–3071 (2010).
    [CrossRef]
  8. V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.
  9. E. L. Lim, S.-U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI1.
  10. M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
    [CrossRef]
  11. J. W. Nicholson, “High-power continuous wave erbium-doped fiber laser pumped by a 1480 nm Raman fiber laser,” Proc. SPIE 8237, 82370K (2012).
    [CrossRef]
  12. D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.
  13. M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.
  14. M. Dubinskii, J. Zhang, and I. Kudryashov, “Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling,” Appl. Phys. Lett. 93, 031111 (2008).
    [CrossRef]
  15. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
    [CrossRef]
  16. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Optics and Photonics (Academic, 1999).
  17. M. N. Zervas and R. I. Laming, “Rayleigh-scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31, 468–471 (1995).
    [CrossRef]
  18. J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 30–36 (2009).
    [CrossRef]
  19. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14, 69–81 (2006).
    [CrossRef]
  20. R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20, 4436–4443 (2012).
    [CrossRef]
  21. Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25, 247–254 (2008).
    [CrossRef]
  22. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  23. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [CrossRef]
  24. nLIGHT, “LIEKKI Er60-xx-xxx Datasheet,” http://www.nlight.net/nlight-files/file/datasheets/Fibers/nLIGHT_LIEKKI_Er60-xx-xxx_051512.pdf .
  25. M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
    [CrossRef]
  26. M. W. Wright, H. Yao, and J. R. Marciante, “Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications,” JPL IPN Progress Report 42–189, California Institute of Technology, 15May2012.
  27. W. L. Wolfe, Introduction to Radiometry, Tutorial Texts in Optical Engineering (SPIE, 1998).
  28. OFS, Data Sheet for Erbium-Doped Fiber EDF-LSL 108729864 (OFS, 2012).
  29. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, “Highly efficient 4 W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett. 24, 673–675 (1999).
    [CrossRef]

2012 (3)

J. W. Nicholson, “High-power continuous wave erbium-doped fiber laser pumped by a 1480 nm Raman fiber laser,” Proc. SPIE 8237, 82370K (2012).
[CrossRef]

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20, 4436–4443 (2012).
[CrossRef]

2010 (2)

2009 (3)

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
[CrossRef]

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 30–36 (2009).
[CrossRef]

2008 (3)

2006 (1)

2004 (1)

1999 (1)

1995 (1)

M. N. Zervas and R. I. Laming, “Rayleigh-scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31, 468–471 (1995).
[CrossRef]

1993 (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

1991 (2)

R. S. Quimby, “Output saturation in a 980 nm pumped erbium-doped fiber amplifier,” Appl. Opt. 30, 2546–2552 (1991).
[CrossRef]

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Alam, S.-U.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

E. L. Lim, S.-U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI1.

Anderson, J.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Barty, C. P. J.

Bayon, J. F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Beach, R. J.

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Optics and Photonics (Academic, 1999).

Blixt, P.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Bubnov, M. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Caneau, C.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Carlnas, T.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Chatigny, S.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

Clarkson, W. A.

Dawson, J. W.

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

DiGiovanni, D. J.

DiMarcello, F.

Dubinskii, M.

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and I. Kudryashov, “Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling,” Appl. Phys. Lett. 93, 031111 (2008).
[CrossRef]

Ellison, A.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Fini, J. M.

Fleming, J.

Gagnon, E.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Ghiringhelli, F.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Goldberg, L.

Guryanov, A. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Harker, A. T.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Headley, C.

J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley, and D. J. DiGiovanni, “Raman fiber laser with 81 W output power at 1480 nm,” Opt. Lett. 35, 3069–3071 (2010).
[CrossRef]

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Heebner, J. E.

Horley, R. J.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Hughes, L.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Jakobsen, D.

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Jaskorzynska, B.

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

Jebali, M. A.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

Jeong, Y.

Jiang, Z.

Kliner, D. A. V.

Koplow, J. P.

Kotov, L. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Kudryashov, I.

M. Dubinskii, J. Zhang, and I. Kudryashov, “Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling,” Appl. Phys. Lett. 93, 031111 (2008).
[CrossRef]

Laming, R. I.

M. N. Zervas and R. I. Laming, “Rayleigh-scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31, 468–471 (1995).
[CrossRef]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Lapointe, M.-A.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

LaRochelle, S.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

Likhachev, M. E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Lim, E. L.

E. L. Lim, S.-U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI1.

Lipatov, D. S.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Liu, X.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Maran, J.-N.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

Marciante, J. R.

R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express 20, 4436–4443 (2012).
[CrossRef]

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 30–36 (2009).
[CrossRef]

Z. Jiang and J. R. Marciante, “Impact of transverse spatial-hole burning on beam quality in large-mode-area Yb-doped fibers,” J. Opt. Soc. Am. B 25, 247–254 (2008).
[CrossRef]

M. W. Wright, H. Yao, and J. R. Marciante, “Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications,” JPL IPN Progress Report 42–189, California Institute of Technology, 15May2012.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Medvedkov, O. I.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Messerly, M. J.

Monberg, E.

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

Nicholson, J.

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Nicholson, J. W.

Nilsson, J.

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Optics and Photonics (Academic, 1999).

Palsdottir, B.

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Pax, P. H.

Payne, D. N.

Quimby, R. S.

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

E. L. Lim, S.-U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI1.

Sahu, J. K.

Sarangan, A. M.

Shverdin, M. Y.

Siders, C. W.

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Optics and Photonics (Academic, 1999).

Smith, R. C. G.

Sridharan, A. K.

Stappaerts, E. A.

Supradeepa, V.

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Taunay, T.

Ter-Mikirtychev, V.

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
[CrossRef]

Turner, P. W.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Varnham, M. P.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Vechkanov, N. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Walton, D. T.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Wisk, P.

Wolfe, W. L.

W. L. Wolfe, Introduction to Radiometry, Tutorial Texts in Optical Engineering (SPIE, 1998).

Wright, M. W.

M. W. Wright, H. Yao, and J. R. Marciante, “Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications,” JPL IPN Progress Report 42–189, California Institute of Technology, 15May2012.

Yan, M.

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

Yan, M. F.

Yao, H.

M. W. Wright, H. Yao, and J. R. Marciante, “Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications,” JPL IPN Progress Report 42–189, California Institute of Technology, 15May2012.

Zah, C. E.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Zenteno, L. A.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

Zervas, M. N.

M. N. Zervas and R. I. Laming, “Rayleigh-scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31, 468–471 (1995).
[CrossRef]

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

Zhang, J.

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency,” Opt. Lett. 34, 1507–1509 (2009).
[CrossRef]

M. Dubinskii, J. Zhang, and I. Kudryashov, “Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling,” Appl. Phys. Lett. 93, 031111 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Dubinskii, J. Zhang, and I. Kudryashov, “Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling,” Appl. Phys. Lett. 93, 031111 (2008).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Electron. Lett. (1)

M. Dubinskii, J. Zhang, and V. Ter-Mikirtychev, “Record-efficient, resonantly-pumped, Er-doped singlemode fibre amplifier,” Electron. Lett. 45, 400–401 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. N. Zervas and R. I. Laming, “Rayleigh-scattering effect on the gain efficiency and noise of erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31, 468–471 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15, 30–36 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Blixt, J. Nilsson, T. Carlnas, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: experiments and modeling,” IEEE Photon. Technol. Lett. 3, 996–998 (1991).
[CrossRef]

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photon. Technol. Lett. 5, 73–75 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

J. W. Nicholson, “High-power continuous wave erbium-doped fiber laser pumped by a 1480 nm Raman fiber laser,” Proc. SPIE 8237, 82370K (2012).
[CrossRef]

Quantum Electron. (1)

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, “High-performace cladding-pumped erbium-doped fibre laser and amplifier,” Quantum Electron. 42, 432–436 (2012).
[CrossRef]

Other (10)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Optics and Photonics (Academic, 1999).

V. Supradeepa, J. Nicholson, C. Headley, M. Yan, B. Palsdottir, and D. Jakobsen, “New, high efficiency Raman laser architecture for scalable, high power 1.5 micron fiber lasers,” in Frontiers in Optics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW6C.2.

E. L. Lim, S.-U. Alam, and D. J. Richardson, “Highly efficient, high power, inband-pumped erbium/ytterbium-codoped fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI1.

D. T. Walton, L. A. Zenteno, A. Ellison, J. Anderson, X. Liu, L. Hughes, C. Caneau, and C. E. Zah, “Resonantly pumped double clad erbium-doped fiber laser,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMK5.

M. A. Jebali, J.-N. Maran, S. LaRochelle, S. Chatigny, M.-A. Lapointe, and E. Gagnon, “A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser,” in CLEO: Applications and Technology, OSA Technical Digest (online) (Optical Society of America, 2012), paper JTh1I.3.

S.-U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, and M. N. Zervas, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper CWJ4.

nLIGHT, “LIEKKI Er60-xx-xxx Datasheet,” http://www.nlight.net/nlight-files/file/datasheets/Fibers/nLIGHT_LIEKKI_Er60-xx-xxx_051512.pdf .

M. W. Wright, H. Yao, and J. R. Marciante, “Resonant pumping of Er-doped fiber amplifiers for improved laser efficiency in free-space optical communications,” JPL IPN Progress Report 42–189, California Institute of Technology, 15May2012.

W. L. Wolfe, Introduction to Radiometry, Tutorial Texts in Optical Engineering (SPIE, 1998).

OFS, Data Sheet for Erbium-Doped Fiber EDF-LSL 108729864 (OFS, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Level diagram of Er3+ ions showing pump absorption, signal emission, multiphonon transitions, and the transitions related to cooperative UC and PIQ. ESA in the case of 980 nm pumping is also indicated. The radiative transitions are marked red and the nonradiative transitions are marked blue.

Fig. 2.
Fig. 2.

Depiction of mode size and shape relative to a small fiber core, a large fiber core, and the core of a bent fiber.

Fig. 3.
Fig. 3.

Experimental (lines) and calculated (markers) output power versus absorbed pump power for a resonantly pumped dual-clad EDFA. Signal wavelength is 1560 nm (black squares/solid line), 1565 nm (red circles/dashed line), and 1570 nm (blue triangles/dashed–dotted line), respectively. Experimental data is from Fig. 4, [14].

Fig. 4.
Fig. 4.

Gain/loss spectra for Er3+ under various inversion levels labeled above the individual curves. Inversion level is defined as the ratio N2/N. Note the different scales between positive and negative vertical axes.

Fig. 5.
Fig. 5.

Output power versus pump or signal wavelength for 10 W of counterpropagating pump. Pump (left, blue): signal wavelength and fiber length are optimized for every pump wavelength. Signal (right, red): fiber length is optimized for every signal wavelength using 1530 nm pump.

Fig. 6.
Fig. 6.

Output power versus pump configuration. A total pump power of 10 W is split between forward and backward pumping.

Fig. 7.
Fig. 7.

Extracted power (left axis, black) and signal gain (right axis, blue) versus seed power under 10 W, backward pumping.

Fig. 8.
Fig. 8.

Contours of EDFA output power as a function of cladding diameter and doping density for optimized fiber lengths. All other parameters are described in the text.

Fig. 9.
Fig. 9.

Contours of EDFA output power as a function of core diameter and doping density for optimized fiber lengths when the cladding diameter is 125 μm and the background loss is 41dB/km. Figures 9, 11, 13, and 15 are drawn on the same color scale as Fig. 8 for easy comparison.

Fig. 10.
Fig. 10.

Contours of optimized fiber length in 10 m increments as a function of core diameter and doping density for optimized output power when the cladding diameter is 125 μm and the background loss is 41dB/km.

Fig. 11.
Fig. 11.

Contours of EDFA output power as a function of core diameter and doping density for optimized fiber lengths when the cladding diameter is 55 μm and the background loss is 41dB/km. Figures 9, 11, 13, and 15 are drawn on the same color scale as Fig. 8 for easy comparison.

Fig. 12.
Fig. 12.

Contours of optimized fiber length in 10 m increments as a function of core diameter and doping density for optimized output power when the cladding diameter is 55 μm and the background loss is 41dB/km.

Fig. 13.
Fig. 13.

Contours of EDFA output power as a function of core diameter and doping density for optimized fiber lengths when the cladding diameter is 125 μm and the background loss is 1.7dB/km. Figures 9, 11, 13, and 15 are drawn on the same color scale as Fig. 8 for easy comparison.

Fig. 14.
Fig. 14.

Contours of optimized fiber length as a function of core diameter and doping density for optimized output power when the cladding diameter is 125 μm and the background loss is 1.7dB/km. Note the logarithmic color scale used for these extreme fiber lengths.

Fig. 15.
Fig. 15.

Contours of EDFA output power as a function of core diameter and doping density for optimized fiber lengths when the cladding diameter is 55 μm and the background loss is 1.7dB/km. Figures 9, 11, 13, and 15 are drawn on the same color scale as Fig. 8 for easy comparison.

Fig. 16.
Fig. 16.

Contours of optimized fiber length as a function of core diameter and doping density for optimized output power when the cladding diameter is 55 μm and the background loss is 1.7dB/km. Note the logarithmic color scale used for these extreme fiber lengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dN2(s)/dt=λΓλm(Pλ,++Pλ,)(σλabsN1(s)σλemiN2(s))/AErhνN2(s)/τ2CN2(s)2=0,
dN2(p)/dt=λΓλm(Pλ,++Pλ,)(2σλabsN1(p)σλemiN2(p))/AErhνN2(p)/τ2=0,
±dPλ,±dz=[(N2(s)+N2(p))σλemi(N1(s)+2N1(p)+N2(p))σλabs]ΓλgPλ,±+(N2(s)+N2(p))σλemiΓλghνΔναλPλ,±+SRλPλ,.

Metrics