Abstract

Laser interferometers have been widely implemented for the displacement sensing and positioning calibration of the precision mechanical industry, due to their excellent measuring features and direct traceability to the dimensional definition. Currently some kinds of modified Fabry–Perot interferometers with a planar mirror or a corner cube prism as the measurement mirror have been proposed. Each optical structure of both models has the individual particularity and performance for measuring applications. In this investigation, a multi-interferometric displacement system has been proposed whose measurement mirror can be quickly and conveniently altered with a planar mirror or a corner cube reflector depending on the measuring demand. Some experimental results and analyses about the interpolation error and displacement measurements with both reflectors have been demonstrated. According to the results, suggestions about the choice of a measuring reflector and interpolation model have been presented. With the measuring verifications, the developed system with a maximum standard deviation less than 0.2081 μm in measuring range of 300 mm would be a compact and robust tool for sensing or calibrating the linear displacement of mechanical equipment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Jaeger, “Limitations of precision length measurements based on interferometers,” Measurement 43, 652–658 (2010).
    [CrossRef]
  2. J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
    [CrossRef]
  3. E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
    [CrossRef]
  4. J. R. Lawall, “Fabry–Perot metrology for displacements up to 50 mm,” J. Opt. Soc. Am. A 22, 2786–2798 (2005).
    [CrossRef]
  5. H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
    [CrossRef]
  6. Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
    [CrossRef]
  7. J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, Adam Hilger Series on Optics and Optoelectronics (Taylor & Francis, 1989), pp. 1–43.
  8. T. K. Gangopadhyay and P. J. Henderson, “Vibration: history and measurement with an extrinsic Fabry–Perot sensor with solid-state laser interferometry,” Appl. Opt. 38, 2471–2477 (1999).
    [CrossRef]
  9. D. S. Komm, R. A. Blanken, and P. Brossier, “Fast-scanning far-infrared Fabry–Perot interferometer,” Appl. Opt. 14, 460–464 (1975).
    [CrossRef]
  10. H.-J. Yang, J. Deibel, S. Nyberg, and K. Riles, “High-precision absolute distance and vibration measurement with frequency scanned interferometry,” Appl. Opt. 44, 3937–3944 (2005).
  11. P. Rabinowitz, S. F. Jacobs, T. Shultz, and G. Gould, “Cube-corner Fabry–Perot interferometer,” J. Opt. Soc. Am. 52, 452–453 (1962).
    [CrossRef]
  12. L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
    [CrossRef]
  13. L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
    [CrossRef]
  14. P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Appl. Opt. 20, 3382–3384 (1981).
    [CrossRef]
  15. K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
    [CrossRef]
  16. P. Gregorcic, T. Pozar, and J. Mozina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17, 16322–16331 (2009).
    [CrossRef]

2012 (1)

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

2011 (2)

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef]

J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
[CrossRef]

2010 (3)

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
[CrossRef]

G. Jaeger, “Limitations of precision length measurements based on interferometers,” Measurement 43, 652–658 (2010).
[CrossRef]

2009 (1)

2007 (1)

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

2005 (2)

2002 (1)

K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
[CrossRef]

1999 (1)

1981 (1)

1975 (1)

1962 (1)

Blanken, R. A.

Brossier, P.

Chang, C. P.

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
[CrossRef]

Chang, C.-P.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef]

Chen, J. C.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Deibel, J.

Deturche, R.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Franke, K.-H.

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Gangopadhyay, T. K.

Gould, G.

Gregorcic, P.

Hausotte, T.

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Henderson, P. J.

Heydemann, P. L. M.

Hsieh, H. L.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Jacobs, S. F.

Jaeger, G.

G. Jaeger, “Limitations of precision length measurements based on interferometers,” Measurement 43, 652–658 (2010).
[CrossRef]

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Komm, D. S.

Lawall, J. R.

Lee, J.

J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
[CrossRef]

Lee, J. Y.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Lee, T. H.

K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
[CrossRef]

Lerondel, G.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Machleidt, T.

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Manske, E.

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Mastylo, R.

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Mozina, J.

Nyberg, S.

Pozar, T.

Rabinowitz, P.

Riles, K.

Shultz, T.

Shyu, L. H.

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
[CrossRef]

Shyu, L.-H.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef]

Tan, K. K.

K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
[CrossRef]

Tung, P. C.

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

Vaughan, J. M.

J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, Adam Hilger Series on Optics and Optoelectronics (Taylor & Francis, 1989), pp. 1–43.

Wang, Y. C.

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
[CrossRef]

Wang, Y.-C.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef]

Wu, W. T.

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

Yang, H.-J.

Yoon, H.

J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
[CrossRef]

Yoon, T. H.

J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
[CrossRef]

Zhou, H. X.

K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
[CrossRef]

Appl. Opt. (4)

IEEE Trans. Instrum. Meas. (1)

K. K. Tan, H. X. Zhou, and T. H. Lee, “New interpolation method for quadrature encoder signals,” IEEE Trans. Instrum. Meas. 51, 1073–1079 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol. 21, 115304 (2010).
[CrossRef]

E. Manske, T. Hausotte, R. Mastylo, T. Machleidt, K.-H. Franke, and G. Jaeger, “New applications of the nanopositioning and nanomeasuring machine by using advanced tactile and non-tactile probes,” Meas. Sci. Technol. 18, 520–527 (2007).
[CrossRef]

Measurement (1)

G. Jaeger, “Limitations of precision length measurements based on interferometers,” Measurement 43, 652–658 (2010).
[CrossRef]

Opt. Commun. (1)

J. Lee, H. Yoon, and T. H. Yoon, “High-resolution parallel multipass laser interferometer with an interference fringe spacing of 15 nm,” Opt. Commun. 284, 1118–1122 (2011).
[CrossRef]

Opt. Express (1)

Rev. Sci. Instrum. (1)

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef]

Sens. Lett. (1)

L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference,” Sens. Lett. 10, 1109–1112 (2012).
[CrossRef]

Sensors (1)

Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on Michelson and Fabyr–Perot interferometers utilized for the displacement measurement,” Sensors 10, 2577–2586 (2010).
[CrossRef]

Other (1)

J. M. Vaughan, The Fabry–Perot Interferometer: History, Theory, Practice and Applications, Adam Hilger Series on Optics and Optoelectronics (Taylor & Francis, 1989), pp. 1–43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1.
Fig. 1.

Conventional Fabry–Perot interferometer.

Fig. 2.
Fig. 2.

Proposed interferometer by Rabinowitz et al. [11].

Fig. 3.
Fig. 3.

Polarized folded Fabry–Perot interferometer.

Fig. 4.
Fig. 4.

(a) Theoretical simulation of the interference signals and (b) Lissajous figure of the interference signals.

Fig. 5.
Fig. 5.

Optical path arrangement with variable measurement mirrors, type I and type II.

Fig. 6.
Fig. 6.

(b) Lissajous figure of the interference signals (R=25%, T=50%).

Fig. 7.
Fig. 7.

Interference signals by the planar mirror (type I).

Fig. 8.
Fig. 8.

Interference signals by the CCR (type II).

Fig. 9.
Fig. 9.

Interpolation errors of interference signals with different finesses.

Fig. 10.
Fig. 10.

Scheme of comparison measurements.

Fig. 11.
Fig. 11.

Interferometric signals with different interpolation models (sinusoidal and LUT model).

Fig. 12.
Fig. 12.

Frequency spectrum of the self-developed system’s signals processed by the sinusoidal processing model (vibration frequency of the piezo transducer: 100 Hz).

Fig. 13.
Fig. 13.

Frequency spectrum of the commercial interferometer’s signals processed by the sinusoidal processing model (vibration frequency of the piezo transducer: 100 Hz).

Fig. 14.
Fig. 14.

Frequency spectrum of the self-developed system’s signals processed by the LUT model (vibration frequency of the piezo transducer: 100 Hz).

Fig. 15.
Fig. 15.

Experimental setup of the resolution testing.

Fig. 16.
Fig. 16.

Resolution testing of the type I interferometer (4 nm).

Fig. 17.
Fig. 17.

Resolution testing of the type I interferometer (8 nm).

Fig. 18.
Fig. 18.

Resolution testing of the type II interferometer (4 nm).

Fig. 19.
Fig. 19.

Resolution testing of the type II interferometer (8 nm).

Fig. 20.
Fig. 20.

Experimental configuration for comparison displacement measurements with the planar mirror.

Fig. 21.
Fig. 21.

Results of comparison displacement measurements with the planar mirror.

Fig. 22.
Fig. 22.

Experimental configuration for comparison displacement measurements with the CCR.

Fig. 23.
Fig. 23.

Results of comparison displacement measurements with the CCR.

Tables (2)

Tables Icon

Table 1. Experimental Results With the Planar Mirror

Tables Icon

Table 2. Experimental Results With the CCR

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=12I0×T21+R22×R×cos(4πdλ).
Is-type=12A02×T2×T1+R2×T22×T×R×cos(8πdλπ4),
Ip-type=12A02×T2×T1+R2×T22×T×R×cos(8πdλ+π4).
Is=18A02×[R·(1+T2)2·R×T×cos(δπ4)1+R2·T22·(R×T)×cos(δπ4)],
Ip=18A02×[R·(1+T2)2·R×T×cos(δ+π4)1+R2·T22·(R×T)×cos(δ+π4)],

Metrics