Abstract

We present a detailed study of a high-sensitivity relative humidity (RH) sensor based on Agarose-coated transmission type photonic crystal fiber interferometer for what is the first time to our knowledge. The sensor shows a wavelength shift of approximately 56 nm for a humidity change of 58% RH. The repeatability of the coating layer formation and the evolution of the coating layers on passing the device though Agarose solution multiple times are studied in detail by observing the spectral shift resulting from the effect on the effective index of the cladding mode. Also, a detailed study is reported of the sensor performance in terms of its sensitivity, repeatability, and long-term stability. The sensor shows a linear response for an RH change in the range of 40%–80% RH with a humidity resolution of 0.017% RH and a higher humidity resolution of 0.007% RH in the range 80%–95% RH. The measurement accuracy of the sensor in the RH range 40%–80% is ±2% RH, and in the range 80%–95%, the accuracy is about ±1% RH. The response time of the sensor is 86 ms, when RH jumps from 50% to 90%. The temperature dependence of the sensor is found to be 0.27nm/°C, which is quite small compared to the RH sensitivity of the sensor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  2. R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
    [CrossRef]
  3. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
    [CrossRef]
  4. D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28, 3542–3547 (2010).
    [CrossRef]
  5. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).
    [CrossRef]
  6. M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30, 1185–1189 (2012).
    [CrossRef]
  7. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
    [CrossRef]
  8. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
    [CrossRef]
  9. J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
    [CrossRef]
  10. J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3, 3325–3331 (2012).
    [CrossRef]
  11. J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
    [CrossRef]
  12. J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
    [CrossRef]
  13. W. J. Bock, T. A. Eftimov, P. Mikulic, and J. Chen, “An inline core-cladding intermodal interferometer using a photonic crystal fiber,” J. Lightwave Technol. 27, 3933–3939 (2009).
    [CrossRef]
  14. J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
    [CrossRef]
  15. M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
    [CrossRef]

2013 (1)

2012 (6)

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
[CrossRef]

M. Smietana, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Refractive-index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber,” J. Lightwave Technol. 30, 1185–1189 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3, 3325–3331 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

2010 (3)

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28, 3542–3547 (2010).
[CrossRef]

2009 (2)

2008 (1)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

2007 (2)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
[CrossRef]

Arregui, F. J.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Badenes, G.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).
[CrossRef]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Barrera, D.

Bock, W. J.

Brabant, D.

Cardenas-Sevilla, G. A.

Chen, J.

Choi, H. Y.

del Villar, I.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Eftimov, T.

Eftimov, T. A.

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3, 3325–3331 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

Fernandez-Valdivielso, C.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Finazzi, V. P.

Hernaez, M.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Jha, R.

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).
[CrossRef]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

Kim, M. J.

Lee, B. H.

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3, 3325–3331 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

Matias, I. R.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Mikulic, P.

Minkovich, V. P.

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28, 3542–3547 (2010).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Pruneri, V.

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

Sales, S.

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A miniature optical breathing sensor,” Biomed. Opt. Express 3, 3325–3331 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30, 1150–1155 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

Smietana, M.

Villatoro, J.

D. Barrera, J. Villatoro, V. P. Finazzi, G. A. Cardenas-Sevilla, V. P. Minkovich, S. Sales, and V. Pruneri, “Low-loss photonic crystal fiber interferometers for sensor networks,” J. Lightwave Technol. 28, 3542–3547 (2010).
[CrossRef]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34, 617–619 (2009).
[CrossRef]

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Zamarreño, C. R.

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

R. Jha, J. Villatoro, and G. Badenes, “Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing,” Appl. Phys. Lett. 93, 191106 (2008).
[CrossRef]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007).
[CrossRef]

Biomed. Opt. Express (1)

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1343 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an Agarose infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quantum Electron. 18, 1553–1559 (2012).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (1)

Phys. Status Solidi C (1)

M. Hernaez, C. R. Zamarreño, C. Fernandez-Valdivielso, I. del Villar, F. J. Arregui, and I. R. Matias, “Agarose optical fibre humidity sensor based on electromagnetic resonance in the infra-red region,” Phys. Status Solidi C 7, 2767–2769 (2010).
[CrossRef]

Proc. SPIE (1)

J. Mathew, Y. Semenova, and G. Farrell, “A high sensitivity humidity sensor based on an Agarose coated photonic crystal fiber interferometer,” Proc. SPIE 8421, 842177 (2012).
[CrossRef]

Sens. Actuators A (1)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Transmission spectra of interferometers with L = 100 , 40, 20, and 10 mm in the wavelength range of 1500–1600 nm.

Fig. 2.
Fig. 2.

Fringe spacing as a function of length of PCF observed for a transmission-type interferometer.

Fig. 3.
Fig. 3.

Response of the interferometer to external refractive index.

Fig. 4.
Fig. 4.

Evolution of the Agarose coating layer is confirmed by the increase in spectral shift as the number of times the fiber passes through the solution increases.

Fig. 5.
Fig. 5.

Spectral shifts for different devices obtained (a) after single pass of the fiber through the solution and (b) after double pass of the device through the solution.

Fig. 6.
Fig. 6.

Schematic diagram of the experimental setup to calibrate the sensor. Inset, a schematic of the Agarose-coated interferometer. (SLED, super luminescent diode; OSA, optical spectrum analyzer; SMF, single-mode fiber; PCF, photonic crystal fiber; PCFI, photonic crystal fiber interferometer).

Fig. 7.
Fig. 7.

Spectral responses of the sensor at different RH values.

Fig. 8.
Fig. 8.

Spectral peak shift versus ambient RH (error bars shown are calculated from the data obtained from six experimental measurements).

Fig. 9.
Fig. 9.

RH response of the sensor: measurements are taken with an interval of 20 days and show the long term stability of the sensor.

Fig. 10.
Fig. 10.

Temperature dependence of the sensor.

Fig. 11.
Fig. 11.

Response time of the sensor.

Tables (1)

Tables Icon

Table 1. Parameters of the AC-PCFI Device at Two RH Values

Metrics