Abstract

An intensity modulated fiber-optic position sensor, based on a fiber-to-bundle coupling and a readout system using a CMOS image camera together with fast routines for position extraction and calibration, is presented and analyzed. The proposed system eliminates alignment issues otherwise associated with coupling-based fiber-optic sensors, still keeping the sensing point free from detector electronics. In this study the robustness of the system is characterized through simulations of the system performance, and the outcome is compared with experimental results. It is shown that knowledge of the shape of the coupled power distribution is the single most important factor for high performance of the system. Further it is experimentally shown that the position extraction error can be improved down to the theoretical limit by employing a modulation function model well fitted to the real coupled power distribution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
    [CrossRef]
  2. J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
    [CrossRef]
  3. M. Kimura and K. Toshima, “A new type optical fiber vibration-sensor,” in Transducers ’97, 1997 International Conference on Solid-State Sensors and Actuators (IEEE, 1997), pp. 1225–1228.
  4. J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sens. Actuators A 68, 350–355 (1998).
    [CrossRef]
  5. J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.
  6. J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
    [CrossRef]
  7. M. A. van Eijkelenborg, “Imaging with microstructured polymer fibre,” Opt. Express 12, 342–346 (2004).
    [CrossRef]
  8. C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber Splices and Connectors (Dekker, 1986), pp. 103–104.
  9. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
    [CrossRef]

2008

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

2004

1998

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sens. Actuators A 68, 350–355 (1998).
[CrossRef]

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

1997

E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
[CrossRef]

1996

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Arce, J. L.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Arvidsson, B.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.

Cobo, A.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Echevarría, J.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Jason, J.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.

Kalenik, J.

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sens. Actuators A 68, 350–355 (1998).
[CrossRef]

Kimura, M.

M. Kimura and K. Toshima, “A new type optical fiber vibration-sensor,” in Transducers ’97, 1997 International Conference on Solid-State Sensors and Actuators (IEEE, 1997), pp. 1225–1228.

Labeye, P.

E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
[CrossRef]

Lagarias, J. C.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Larsson, A.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.

Lomer, M.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

López, R.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

López-Higuera, J. M.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Mettler, S. C.

C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber Splices and Connectors (Dekker, 1986), pp. 103–104.

Miller, C. M.

C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber Splices and Connectors (Dekker, 1986), pp. 103–104.

Morante, M. A.

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Mottier, P.

E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
[CrossRef]

Nilsson, H.-E.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.

Ollier, E.

E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
[CrossRef]

Pajak, R.

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sens. Actuators A 68, 350–355 (1998).
[CrossRef]

Reeds, J. A.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Toshima, K.

M. Kimura and K. Toshima, “A new type optical fiber vibration-sensor,” in Transducers ’97, 1997 International Conference on Solid-State Sensors and Actuators (IEEE, 1997), pp. 1225–1228.

van Eijkelenborg, M. A.

White, I. A.

C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber Splices and Connectors (Dekker, 1986), pp. 103–104.

Wright, M. H.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Wright, P. E.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Electron. Lett.

E. Ollier, P. Labeye, and P. Mottier, “Integrated micro-opto-mechanical vibration sensor connected to optical fibres,” Electron. Lett. 33, 525–526 (1997).
[CrossRef]

IEEE Sens. J.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Experimental study of an intensity modulated fiber-optic position sensor with a novel readout system,” IEEE Sens. J. 8, 1105–1113 (2008).
[CrossRef]

Opt. Express

Proc. SPIE

J. M. López-Higuera, A. Cobo, M. A. Morante, J. Echevarría, J. L. Arce, M. Lomer, and R. López, “New low cost fiber optic accelerometer system for stator winding monitoring of hydroelectric generating machines,” Proc. SPIE 2868, 510–515 (1996).
[CrossRef]

Sens. Actuators A

J. Kalenik and R. Pajak, “A cantilever optical-fiber accelerometer,” Sens. Actuators A 68, 350–355 (1998).
[CrossRef]

SIAM J. Optim.

J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998).
[CrossRef]

Other

C. M. Miller, S. C. Mettler, and I. A. White, Optical Fiber Splices and Connectors (Dekker, 1986), pp. 103–104.

J. Jason, H.-E. Nilsson, B. Arvidsson, and A. Larsson, “Monte Carlo simulation of the performance of a fiber-optic position sensor,” in 18th International Optical Fiber Sensors Conference, OSA Technical Digest (Optical Society of America, 2006), paper ThE48.

M. Kimura and K. Toshima, “A new type optical fiber vibration-sensor,” in Transducers ’97, 1997 International Conference on Solid-State Sensors and Actuators (IEEE, 1997), pp. 1225–1228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic configuration of the sensor system setup. The fiber bundle, a one- or two-dimensional fiber array, is coupled directly onto the CMOS image sensor of the camera. Inset: cross section of receiving fiber ribbon used in the one-dimensional setup.

Fig. 2.
Fig. 2.

Algorithm flow chart for the position extraction routine.

Fig. 3.
Fig. 3.

Recorded modulation curves, following a horizontal scan with the transmitting fiber, for the receiving cores of the terminated 12-fiber ribbon.

Fig. 4.
Fig. 4.

(a) Measured modulation curve with polynomial, Gaussian, and piecewise linear (PWL) fits and (b) alternative field shapes for simulation of the impact of differing real and assumed modulation functions.

Fig. 5.
Fig. 5.

Simulated extraction results for a 0 to +500μm offset range of the transmitting fiber using (a) ribbon setup and (b) terminated setup.

Fig. 6.
Fig. 6.

Simulated extraction results for a 0 to +500μm offset range of the transmitting fiber in the ribbon setup, following (a) random <3μm change and (b) random <10μm change in core positions after calibration.

Fig. 7.
Fig. 7.

Simulated extraction results for a 0 to +500μm offset range of the transmitting fiber in a setup with individual modulation functions for the receiving cores, and using (a) single modulation function and (b) individual modulation functions in the extraction.

Fig. 8.
Fig. 8.

Simulated extraction results using setup based on (a) rectangular field model, (b) triangular field model, (c) Gaussian field model, and (d) PWL field model, using the polynomial model in the extraction.

Fig. 9.
Fig. 9.

Experimental extraction error for 500 μm movement of the transmitting fiber, using (a) polynomial model, (b) polynomial model with individual modulation functions, and (c) PWL model with fixed Ib=0.88 on the same receiving end images.

Tables (3)

Tables Icon

Table 1. Individual Modulation Functions for Receiving Cores

Tables Icon

Table 2. Simulation Parameters for Different Field shapes

Tables Icon

Table 3. Parameters for Simulated Standard Setup

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P(x,y)=P0·exp((xxc)2+(yyc)2w2),
P(x,y)=P0·(1(xxc)2+(yyc)2a2)2
(x0,y0)=(i,jIi,jxi,ji,jIi,j,i,jIi,jyi,ji,jIi,j),
P(r)=C·{I0kbr;0r<bIb+ka(br);bra0;r>a,

Metrics