Abstract

A diamond-like carbon (DLC) mirror, used as a grazing incident mirror in a plasma x-ray source, exhibits a high resistance to plasma debris sputtering. Good mirror reflectivity at a wavelength of 13.5 nm was confirmed using synchrotron radiation at the NewSUBARU facility. The erosion rate due to plasma debris sputtered at the incident debris angle of 20° was measured using a laser-produced Xe plasma source developed by the authors. The results indicate that the DLC film has a 5- and 15-fold higher sputtering resistance compared to films made of the traditional mirror materials Ru and Au, respectively. Because the DLC mirror retains a high sputtering resistance to Sn ions, it may be effective in Sn plasma source applications. We conclude that a grazing incident x-ray mirror coated with DLC can be of use as a plasma debris sputtering resistant mirror.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bakshi, EUV Sources for Lithography (SPIE, 2005).
  2. S. Amano, “Laser-plasma extreme ultraviolet source incorporating a cryogenic Xe target,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, ed. (InTech, 2011), pp 353–368.
  3. T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
    [CrossRef]
  4. K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
    [CrossRef]
  5. “NewSUBARU synchrotron radiation facility,” http://www.lasti.u-hyogo.ac.jp/NS-en/ .
  6. K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
    [CrossRef]
  7. S. Amano and T. Mochizuki, “High average and high peak brightness slab laser,” IEEE J. Quantum Electron. 37296–303 (2001).
    [CrossRef]
  8. “Layered mirror reflectivity,” http://henke.lbl.gov/optical_constants/layer2.html .
  9. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University, 2000).
  10. J. F. Ziegler, “SRIM2008,” www.srim.org .
  11. S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
    [CrossRef]
  12. R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
    [CrossRef]
  13. M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
    [CrossRef]

2011

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

2010

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

2008

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

2006

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

2003

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

2001

S. Amano and T. Mochizuki, “High average and high peak brightness slab laser,” IEEE J. Quantum Electron. 37296–303 (2001).
[CrossRef]

Allain, J. P.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Amano, S.

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

S. Amano and T. Mochizuki, “High average and high peak brightness slab laser,” IEEE J. Quantum Electron. 37296–303 (2001).
[CrossRef]

S. Amano, “Laser-plasma extreme ultraviolet source incorporating a cryogenic Xe target,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, ed. (InTech, 2011), pp 353–368.

Attwood, D.

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University, 2000).

Bakshi, V.

V. Bakshi, EUV Sources for Lithography (SPIE, 2005).

Barad, Y.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Chrobak, C.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Fukugaki, K.

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

Goebel, D.

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

Grantham, S.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Hassanein, A.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Hendricks, M. R.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Hiraishi, H.

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

Inaoka, Y.

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

Inoue, T.

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

Johnson, L. K.

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

Kanda, K.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Kirkpatrick, A.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Kitagawa, T.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Kolasinski, R. D.

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

Lucatorto, T. B.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Matsui, S.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Matsuo, J.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Miyamoto, S.

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

Mochizuki, T.

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

S. Amano and T. Mochizuki, “High average and high peak brightness slab laser,” IEEE J. Quantum Electron. 37296–303 (2001).
[CrossRef]

Nieto, M.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Polk, J. E.

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

Rica, B.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Rokusek, D.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Shimoura, A.

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

Tagawa, M.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Takaoka, G. H.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Tarrio, C.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Teraoka, Y.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Titov, V.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Tode, M.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Toyoda, N.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Tsubakino, H.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Yamada, I.

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Yokota, K.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Appl. Surf. Sci.

R. D. Kolasinski, J. E. Polk, D. Goebel, and L. K. Johnson, “Carbon sputtering yield measurements at grazing incidence,” Appl. Surf. Sci. 254, 2506–2515 (2008).
[CrossRef]

IEEE J. Quantum Electron.

S. Amano and T. Mochizuki, “High average and high peak brightness slab laser,” IEEE J. Quantum Electron. 37296–303 (2001).
[CrossRef]

J. Appl. Phys.

M. Nieto, J. P. Allain, V. Titov, M. R. Hendricks, A. Hassanein, D. Rokusek, C. Chrobak, C. Tarrio, Y. Barad, S. Grantham, T. B. Lucatorto, and B. Rica, “Effect of xenon bombardment on ruthenium-coated grazing incidence collector mirror lifetime for extreme ultraviolet lithography,” J. Appl. Phys. 100, 053510 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

K. Kanda, K. Yokota, M. Tagawa, M. Tode, Y. Teraoka, and S. Matsui, “Effect of the soft x-rays on highly hydrogenated diamond-like carbon films,” Jpn. J. Appl. Phys. 50, 055801 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

T. Kitagawa, I. Yamada, N. Toyoda, H. Tsubakino, J. Matsuo, G. H. Takaoka, and A. Kirkpatrick, “Hard DLC film formation by gas cluster ion beam assisted deposition,” Nucl. Instrum. Methods Phys. Res. B 201, 405–412 (2003).
[CrossRef]

Rev. Sci. Instrum.

K. Fukugaki, S. Amano, A. Shimoura, T. Inoue, S. Miyamoto, and T. Mochizuki, “Rotating cryogenic drum supplying solid Xe target to generate extreme ultraviolet radiation,” Rev. Sci. Instrum. 77, 063114 (2006).
[CrossRef]

S. Amano, Y. Inaoka, H. Hiraishi, S. Miyamoto, and T. Mochizuki, “Laser-plasma debris from a rotating cryogenic-solid-Xe target,” Rev. Sci. Instrum. 81, 023104 (2010).
[CrossRef]

Other

“NewSUBARU synchrotron radiation facility,” http://www.lasti.u-hyogo.ac.jp/NS-en/ .

V. Bakshi, EUV Sources for Lithography (SPIE, 2005).

S. Amano, “Laser-plasma extreme ultraviolet source incorporating a cryogenic Xe target,” in Recent Advances in Nanofabrication Techniques and Applications, B. Cui, ed. (InTech, 2011), pp 353–368.

“Layered mirror reflectivity,” http://henke.lbl.gov/optical_constants/layer2.html .

D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University, 2000).

J. F. Ziegler, “SRIM2008,” www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Mirror reflectivity for the DLC and Ru mirrors at 13.5 nm. Circles and lines represent measured and calculated data, respectively.

Fig. 3.
Fig. 3.

Erosion rate of the DLC, Ru, and Au films as measured by QCM with a debris incidence angle of 20°.

Fig. 4.
Fig. 4.

Faraday cup signal of (upper) ion time-of-flight and corresponding (lower) ion energy spectrum. Ion flux in the spectrum was calculated assuming a charge state of +2.

Fig. 5.
Fig. 5.

DLC sputtering yield by Xe and Sn ions, calculated with the SRIM code.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cosθc=1δ,
δ=nareλ2f12π,
ΔT=Ysputt(E)·Fion(E)·mρ,

Metrics