Abstract

We show that a single-layer antireflection coating on a THz source of high refractive index can substantially increase the transmission of emitted THz pulses. Calculations indicate that the optimum coating thickness depends on the exact shape of the generated THz waveform and whether the transmitted waveform is to be optimized for the highest peak (temporal) amplitude, peak spectral amplitude, or pulse energy. We experimentally demonstrate a 15% increase in peak amplitude, a 33% increase in peak spectral amplitude, and a 48% increase in energy for a 100 μm thick fused silica AR coating on a lithium niobate crystal used as THz emitter.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
    [CrossRef]
  2. D. F. Parsons and P. D. Coleman, “Far infrared optical constants of gallium phosphide,” Appl. Opt. 10, 1683–1685 (1971).
    [CrossRef]
  3. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  4. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
    [CrossRef]
  5. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
    [CrossRef]
  6. Y. W. Chen, P. Han, X.-C. Zhang, M.-L. Kuo, and S.-Y. Lin, “Three-dimensional inverted photonic grating with engineerable refractive indices for broadband antireflection of terahertz waves,” Opt. Lett. 35, 3159–3161 (2010).
    [CrossRef]
  7. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
    [CrossRef]
  8. F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496–16508 (2008).
    [CrossRef]
  9. F. D. J. Brunner, A. Schneider, and P. Günter, “Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser,” Appl. Phys. Lett. 94, 061119 (2009).
    [CrossRef]
  10. K. Kawase and N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37, 1862–1866 (1998).
    [CrossRef]
  11. D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
    [CrossRef]
  12. C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
    [CrossRef]
  13. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
    [CrossRef]
  14. I. Hosako, “Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics,” Appl. Opt. 42, 4045–4048 (2003).
    [CrossRef]
  15. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
    [CrossRef]
  16. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
    [CrossRef]
  17. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
    [CrossRef]

2011 (2)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

2010 (1)

2009 (1)

F. D. J. Brunner, A. Schneider, and P. Günter, “Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser,” Appl. Phys. Lett. 94, 061119 (2009).
[CrossRef]

2008 (1)

2007 (1)

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

2006 (1)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

2003 (1)

2001 (1)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

2000 (1)

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

1999 (1)

C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
[CrossRef]

1998 (1)

1996 (1)

1990 (1)

1989 (1)

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

1971 (1)

Allen, M. G.

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Birk, M.

C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
[CrossRef]

Blanchard, F.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Brunner, F. D. J.

F. D. J. Brunner, A. Schneider, and P. Günter, “Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser,” Appl. Phys. Lett. 94, 061119 (2009).
[CrossRef]

F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496–16508 (2008).
[CrossRef]

Chen, Y. W.

Coleman, P. D.

Dobrowolski, J. A.

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Englert, C. R.

C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
[CrossRef]

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Fenner, D. B.

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Fülöp, J. A.

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
[CrossRef]

Gatesman, A. J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Grischkowsky, D.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Günter, P.

Han, P.

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Hensley, J. M.

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Hiromoto, N.

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Hoffmann, M. C.

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
[CrossRef]

Hosako, I.

Jazbinšek, M.

Jepsen, P. U.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Ji, M.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Kawase, K.

Keiding, S.

Khan, R. U. A.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Kuo, M.-L.

Kwon, O.-P.

Kwon, S.-J.

Lin, S.-Y.

Maurer, H.

C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
[CrossRef]

Musante, C.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Neis, M.

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Parsons, D. F.

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

Ruiz, B.

Schall, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Schneider, A.

Stillhart, M.

Sullivan, B. T.

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

Tikhonravov, A. V.

Tredicucci, A.

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Trubetskov, M. K.

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

Verly, P. G.

Waldman, J.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Walther, M.

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Xu, J.

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Yagvesson, S.

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

Zhang, X.-C.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

F. D. J. Brunner, A. Schneider, and P. Günter, “Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser,” Appl. Phys. Lett. 94, 061119 (2009).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011).
[CrossRef]

IEEE Microw. Guided Wave Lett. (1)

A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999).
[CrossRef]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

AR coating optimized for maximum enhancement of the peak amplitude of (a) a unipolar and (b) bipolar THz pulse. The main pulse (dashed line), its first replica (dotted line), and their superposition (solid line) are shown.

Fig. 2.
Fig. 2.

Fused silica AR coating on a LiNbO3 substrate: enhancement factors for peak spectral amplitude (solid line), peak amplitude (dotted line), and energy (dashed line) of (a) a unipolar and (b) bipolar THz pulse as functions of the coating thickness.

Fig. 3.
Fig. 3.

THz pulses emitted from a LiNbO3 crystal coated with a 100 μm thick fused silica plate (solid line) and from an uncoated LiNbO3 crystal under identical conditions (dashed line). (a) The measured THz transients and (b) the corresponding spectra. The expected THz signal from the coated crystal calculated with the measured THz signal from the uncoated crystal is shown for comparison (dotted line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E^out(ν)=H(ν)E^in(ν),
H(ν)=4nncexp(i2πνncdc)(nc+1)(n+nc)+(nc1)(nnc)exp(i4πνncdc).
Eout(t)=tn,nctnc,1k=0rnc,1krnc,nkEin(tkΔt),
Eunipolar(t)=E0exp(t2τ2)(12t2τ2)
Ebipolar(t)=E02exp(12t2τ2)tτ,

Metrics