Abstract

High-power lasers are making increasing demands on laser hosts especially in the area of thermal management. Traditional hosts, such as YAG, are unsuitable for many high-power applications and therefore, new hosts are being developed including rare-earth sesquioxides. We report new measurements of the refractive indices of these materials as functions of wavelength and temperature, which will aid in the design of laser cavities and other nonlinear optical elements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12, 3125–3130 (2004).
    [CrossRef]
  2. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
    [CrossRef]
  3. V. Peters, “Growth and spectroscopy of ytterbium doped sesquioxides,” Ph.D. dissertation (University of Hamburg, 2001).
  4. O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997).
    [CrossRef]
  5. O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
    [CrossRef]
  6. A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
    [CrossRef]
  7. Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1968).
    [CrossRef]
  8. C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990).
    [CrossRef]
  9. F. Schmid, “New approach to high temperature crystal growth from the melt,” Solid State Technol. 16, 45–48 (1973).
  10. R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
    [CrossRef]
  11. R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).
  13. A. Joshi, N. D. Haynes, D. E. Zelmon, O. Staffsudd, and R. Shori, “Impurity concentration and temperature dependence of the refractive indices of Er3+ ceramic Y2O3,” Opt. Express 20, 4428–4435 (2012).
    [CrossRef]
  14. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963).
    [CrossRef]
  15. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).
  16. M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
    [CrossRef]
  17. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
    [CrossRef]
  18. G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
    [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  20. A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979).
    [CrossRef]
  21. A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).
  22. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
    [CrossRef]
  23. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
    [CrossRef]
  24. M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals I. Linear response,” Phys. Rev. B. 41, 3372–3382 (1990).
    [CrossRef]
  25. M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
    [CrossRef]
  26. M. E. Lines, “Physical origin of the temperature dependence of the chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
    [CrossRef]
  27. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
    [CrossRef]
  28. A. Radowsky, “Temperature dependence of electron energy levels in solids,” Phys. Rev. 73, 749–761 (1948).
    [CrossRef]

2012

2008

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

2004

2002

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

2001

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

1997

O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997).
[CrossRef]

1994

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

1993

M. E. Lines, “Physical origin of the temperature dependence of the chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

1990

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals I. Linear response,” Phys. Rev. B. 41, 3372–3382 (1990).
[CrossRef]

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990).
[CrossRef]

1984

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).

1979

A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979).
[CrossRef]

1973

F. Schmid, “New approach to high temperature crystal growth from the melt,” Solid State Technol. 16, 45–48 (1973).

1968

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1968).
[CrossRef]

1967

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
[CrossRef]

1966

M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

1964

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

1963

1951

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

1948

A. Radowsky, “Temperature dependence of electron energy levels in solids,” Phys. Rev. 73, 749–761 (1948).
[CrossRef]

Akchurin, M. Sh.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Becker, P.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Betzler, K.

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

Bohaty, L.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Bond, W. L.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

Boyd, G. D.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
[CrossRef]

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Carter, H. L.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
[CrossRef]

Dettmar, D.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

Dodge, M. J.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).

Dong, J.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Duncan, D. D.

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Fan, H. Y.

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

Feldman, A.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).

Fischer, R. X.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

Fornasiero, L.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

Griebner, U.

Haynes, N. D.

Hobden, M. V.

M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Horowitz, D.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).

Huber, G.

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.

Joshi, A.

Kaminski, A. A.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Kraenkel, C.

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

Lange, C. H.

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

LeClerc, A.

A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979).
[CrossRef]

Lines, M. E.

M. E. Lines, “Physical origin of the temperature dependence of the chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals I. Linear response,” Phys. Rev. B. 41, 3372–3382 (1990).
[CrossRef]

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

Malitson, I. H.

Manoogian, A.

A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).

A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979).
[CrossRef]

Medenbach, O.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997).
[CrossRef]

Miller, R. C.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Mix, E.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

Nassau, K.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Nigara, Y.

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1968).
[CrossRef]

Petermann, K.

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12, 3125–3130 (2004).
[CrossRef]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.

Peters, R.

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.

Peters, V.

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12, 3125–3130 (2004).
[CrossRef]

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

V. Peters, “Growth and spectroscopy of ytterbium doped sesquioxides,” Ph.D. dissertation (University of Hamburg, 2001).

Petrov, V.

Radowsky, A.

A. Radowsky, “Temperature dependence of electron energy levels in solids,” Phys. Rev. 73, 749–761 (1948).
[CrossRef]

Savage, A.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Schlarb, U.

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

Schmid, F.

F. Schmid, “New approach to high temperature crystal growth from the melt,” Solid State Technol. 16, 45–48 (1973).

Shannon, R. D.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997).
[CrossRef]

Shirakawa, A.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Shori, R.

Staffsudd, O.

Takaichi, K.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Tokurakawa, M.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Ueda, K.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Warner, J.

M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Waxler, R. M.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

Woolley, J. C.

A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).

Yagi, H.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Yanagitani, T.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Yen, W. M.

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

Zelmon, D. E.

Appl. Opt.

Appl. Phys. Lett.

G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964).
[CrossRef]

Can. J. Phys.

A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).

J. Appl. Phys.

M. E. Lines, “Physical origin of the temperature dependence of the chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993).
[CrossRef]

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967).
[CrossRef]

J. Cryst. Growth

R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008).
[CrossRef]

J. Opt. A

O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001).
[CrossRef]

J. Opt. Soc. Am. A

O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1968).
[CrossRef]

Laser Phys. Lett.

A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008).
[CrossRef]

Opt. Express

Opt. Mater.

K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002).
[CrossRef]

Opt. Quantum Electron.

G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Lett.

M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966).
[CrossRef]

Phys. Rev.

H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951).
[CrossRef]

A. Radowsky, “Temperature dependence of electron energy levels in solids,” Phys. Rev. 73, 749–761 (1948).
[CrossRef]

Phys. Rev. B

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994).
[CrossRef]

Phys. Rev. B.

M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals I. Linear response,” Phys. Rev. B. 41, 3372–3382 (1990).
[CrossRef]

Phys. Status Solidi B

A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979).
[CrossRef]

Proc. SPIE

C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990).
[CrossRef]

Solid State Technol.

F. Schmid, “New approach to high temperature crystal growth from the melt,” Solid State Technol. 16, 45–48 (1973).

Other

R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).

V. Peters, “Growth and spectroscopy of ytterbium doped sesquioxides,” Ph.D. dissertation (University of Hamburg, 2001).

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Refractive indices of scandia, lutetia, and yttria.

Fig. 2.
Fig. 2.

Refractive index versus temperature, lutetia—(a) visible and (b) near infrared.

Fig. 3.
Fig. 3.

Refractive index versus temperature, scandia—(a) visible and (b) near infrared.

Fig. 4.
Fig. 4.

Refractive index versus temperature, yttria—(a) visible and (b) near infrared.

Tables (1)

Tables Icon

Table 1. Temperature-Dependent Sellmeier Coefficients for Rare-Earth Sesquioxides

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n2=A+(B+CF)λ2λ2(λ1+DF)2+Eλ2λ2λ22,
F=(TT0)(T+T0+546.32)+coth(θ1T+273.16)coth(θ1T0+273.16).
2nnT=((λ2(λ1+DF)2)Cλ2((B+CF)λ2)(2D(λ1+DF)(λ2(λ1+DF)2)2)dFdT.

Metrics