Abstract

Supercontinuum (SC) generation from a highly nonlinear tellurite microstructured optical fiber with multiple rings of holes was demonstrated by pumping with a 2 μm mode-locked picosecond fiber laser. The chromatic dispersion of the fiber was measured with a homemade white-light spectral interferometer in a wide wavelength range and agreed with the theoretical calculation. Although the pumped wavelength was far from the zero dispersion wavelength, with flat dispersion profile of the fiber in the anomalous dispersion, the SC could be expanded from 650 to 2850 nm with launched pulse energy of several hundred picojoules. Simulations of SC generation agreed with the experimental results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  2. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [CrossRef]
  4. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004).
    [CrossRef]
  5. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33, 28–30 (2008).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  8. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
    [CrossRef]
  9. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
    [CrossRef]
  10. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
    [CrossRef]
  11. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18, 26655–26665 (2010).
    [CrossRef]
  12. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
    [CrossRef]
  13. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
    [CrossRef]
  14. L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
    [CrossRef]
  15. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
    [CrossRef]
  16. W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt. 51, 1071–1075 (2012).
    [CrossRef]
  17. M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
    [CrossRef]
  18. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
    [CrossRef]
  19. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
    [CrossRef]

2012 (3)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

W. Gao, M. Liao, L. Yang, X. Yan, T. Suzuki, and Y. Ohishi, “All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber,” Appl. Opt. 51, 1071–1075 (2012).
[CrossRef]

2010 (1)

2009 (4)

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17, 12174–12182 (2009).
[CrossRef]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express 17, 15481–15490 (2009).
[CrossRef]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

2008 (1)

2007 (1)

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006).
[CrossRef]

2005 (1)

2004 (1)

2001 (1)

2000 (2)

1985 (1)

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Alonzo, J.

Andersen, T.

Austin, D. R.

Birks, T. A.

Bise, R.

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Brilland, L.

Brown, T. G.

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Chaudhari, C.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cohen, L.

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

de Sterke, C. M.

Désévédavy, F.

Dimarcello, F.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

El-Amraoui, M.

Fatome, J.

Feder, K.

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Fini, J. M.

Fortier, C.

Fujimoto, J. G.

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Gadret, G.

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ghanta, R. K.

Goto, T.

Grüner-Nielsen, L.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Hartl, I.

Heidt, A. M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Hori, T.

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Jules, J. C.

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

Ko, T. H.

Li, X. D.

Liao, M.

Limpert, J.

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Messaddeq, Y.

Monberg, E.

Nicholson, J. W.

Nishizawa, N.

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Ohishi, Y.

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Qin, G.

Ramme, M.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Ranka, J. K.

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Russell, P. S. J.

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Schimpf, D.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Schreiber, T.

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Skripatchev, I.

Smektala, F.

Stegeman, G.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Stegeman, R.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Stentz, A. J.

Stockert, T.

Stolen, R.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Suzuki, T.

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

Tikhomirov, V. K.

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

Trevor, D. J.

Troles, J.

Tünnermann, A.

Wadsworth, W. J.

Westbrook, P. S.

Windeler, R. S.

Yan, X.

Yang, L.

Yoshida, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. D. O’Donnell, K. Richardson, R. Stolen, A. B. Seddon, D. Furniss, V. K. Tikhomirov, C. Rivero, M. Ramme, R. Stegeman, G. Stegeman, M. Couzi, and T. Cardinal, “Tellurite and fluorotellurite glasses for fiberoptic Raman amplifiers: glass characterization, optical properties, Raman Gain, preliminary fiberization, and fiber characterization,” J. Am. Ceram. Soc. 90, 1448–1457 (2007).
[CrossRef]

J. Lightwave Technol. (1)

L. Cohen, “Comparison of single-mode fiber dispersion measurement techniques,” J. Lightwave Technol. 3, 958–966 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3, 85–90 (2009).
[CrossRef]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross section of the tellurite complex MOF taken by the scanning electron microscope.

Fig. 2.
Fig. 2.

Experimental setup for chromatic dispersion measurement with a Mach–Zehnder interferometer.

Fig. 3.
Fig. 3.

Interference fringes measured by the Mach–Zehnder interferometer at different stepper motor positions.

Fig. 4.
Fig. 4.

Simulated and measured dispersion profile of the fundamental mode in the tellurite complex MOF.

Fig. 5.
Fig. 5.

Pulse-energy-dependent SC spectra of the tellurite complex MOF pumped by the 2 μm picosecond fiber laser.

Fig. 6.
Fig. 6.

Pulse-energy-dependent SC spectra of the tellurite complex MOF pumped by the 1.56 μm femtosecond fiber laser.

Fig. 7.
Fig. 7.

Simulated SC compared with the experimental result: pumped by (a) 1.958 μm picosecond fiber laser and (b) 1.56 μm femtosecond fiber laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 β n ( ω s ) n ! ( ω D W ω S ) n = γ P S 2 ,

Metrics