Abstract

The accuracy of digital in-line holography to detect particle position and size within a 3D domain is evaluated with particular focus placed on detection of nonspherical particles. Dimensionless models are proposed for simulation of holograms from single particles, and these models are used to evaluate the uncertainty of existing particle detection methods. From the lessons learned, a new hybrid method is proposed. This method features automatic determination of optimum thresholds, and simulations indicate improved accuracy compared to alternative methods. To validate this, experiments are performed using quasi-stationary, 3D particle fields with imposed translations. For the spherical particles considered in experiments, the proposed hybrid method resolves mean particle concentration and size to within 4% of the actual value, while the standard deviation of particle depth is less than two particle diameters. Initial experimental results for nonspherical particles reveal similar performance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  2. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  3. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  5. T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
    [CrossRef]
  6. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [CrossRef]
  7. D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express 18, 2426–2448 (2010).
    [CrossRef]
  8. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  9. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
    [CrossRef]
  10. Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51, 255–267 (2012).
    [CrossRef]
  11. P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
    [CrossRef]
  12. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48, 2983–2990 (2009).
    [CrossRef]
  13. V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry,” in Fundamental Problems of Optoelectronics and Microelectronics II (SPIE, 2005).
  14. Y. Park, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Fresnel particle tracing in three dimensions using diffraction phase microscopy,” Opt. Lett. 32, 811–813 (2007).
    [CrossRef]
  15. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
    [CrossRef]
  16. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19, 16410–16417 (2011).
    [CrossRef]
  17. L. Wilson and R. Zhang, “3D localization of weak scatterers in digital holographic microscopy using Rayleigh–Sommerfeld back-propagation,” Opt. Express 20, 16735–16744 (2012).
    [CrossRef]
  18. B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
    [CrossRef]
  19. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
    [CrossRef]
  20. F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).
    [CrossRef]
  21. M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
    [CrossRef]
  22. Y. Yang, B.-s. Kang, and Y.-j. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
    [CrossRef]
  23. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).
  24. S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
    [CrossRef]
  25. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011).
    [CrossRef]
  26. Y. Yang and B.-s. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Tech. 23, 1670–1679 (2009).
    [CrossRef]
  27. Y. Yang and B.-s. Kang, “Experimental validation for the determination of particle positions by the correlation coefficient method in digital particle holography,” Appl. Opt. 47, 5953–5960 (2008).
    [CrossRef]
  28. Y. Yang and B.-s. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser. Eng. 49, 1254–1263 (2011).
    [CrossRef]
  29. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
    [CrossRef]
  30. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  31. M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771–778 (1996).
    [CrossRef]
  32. M. Gu and X. S. Gan, “Effect of an ultrashort pulse on Fresnel diffraction by a circular opaque disk,” Opt. Commun. 125, 1–4 (1996).
    [CrossRef]
  33. K. D. Mielenz, “Algorithms for Fresnel diffraction at rectangular and circular apertures,” J. Res. Natl. Bur. Stand. 103, 497–509 (1998).
    [CrossRef]
  34. J. D’Errico, “FresnelS and FresnelC” (May 3, 2012), retrieved April 16 2012, http://www.mathworks.com/matlabcentral/fileexchange/28765-fresnels-and-fresnelc .
  35. J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1970).
  36. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
    [CrossRef]
  37. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
    [CrossRef]
  38. J.-Y. Tinevez, “Simple tracker” (August 20, 2012), retrieved December 1 2012, http://www.mathworks.com/matlabcentral/fileexchange/34040-simple-tracker .

2012 (2)

2011 (4)

L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19, 16410–16417 (2011).
[CrossRef]

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011).
[CrossRef]

Y. Yang and B.-s. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser. Eng. 49, 1254–1263 (2011).
[CrossRef]

2010 (6)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[CrossRef]

D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express 18, 2426–2448 (2010).
[CrossRef]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).
[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef]

2009 (3)

P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
[CrossRef]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48, 2983–2990 (2009).
[CrossRef]

Y. Yang and B.-s. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Tech. 23, 1670–1679 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

2005 (1)

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

2004 (3)

2003 (1)

2000 (1)

M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
[CrossRef]

1998 (1)

K. D. Mielenz, “Algorithms for Fresnel diffraction at rectangular and circular apertures,” J. Res. Natl. Bur. Stand. 103, 497–509 (1998).
[CrossRef]

1996 (2)

M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771–778 (1996).
[CrossRef]

M. Gu and X. S. Gan, “Effect of an ultrashort pulse on Fresnel diffraction by a circular opaque disk,” Opt. Commun. 125, 1–4 (1996).
[CrossRef]

1993 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Adams, M.

M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
[CrossRef]

Allano, D.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
[CrossRef]

Asundi, A. K.

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Badizadegan, K.

Barbastathis, G.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Cen, K.

Cen, K. F.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Chen, J.

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).

Chen, L.

Cheong, F. C.

Choi, Y.-S.

Choo, Y.-j.

Coëtmellec, S.

Dasari, R. R.

Denis, L.

Dixon, L.

Domínguez-Caballero, J. A.

Feld, M. S.

Fournier, C.

Fugal, J. P.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Gan, X. S.

M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771–778 (1996).
[CrossRef]

M. Gu and X. S. Gan, “Effect of an ultrashort pulse on Fresnel diffraction by a circular opaque disk,” Opt. Commun. 125, 1–4 (1996).
[CrossRef]

Gao, J.

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).

Goepfert, C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

Gopalan, B.

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef]

Grier, D. G.

Gu, M.

M. Gu and X. S. Gan, “Effect of an ultrashort pulse on Fresnel diffraction by a circular opaque disk,” Opt. Commun. 125, 1–4 (1996).
[CrossRef]

M. Gu and X. S. Gan, “Fresnel diffraction by circular and serrated apertures illuminated with an ultrashort pulsed-laser beam,” J. Opt. Soc. Am. A 13, 771–778 (1996).
[CrossRef]

Guildenbecher, D. R.

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).

Huang, L.

Ilchenko, V.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry,” in Fundamental Problems of Optoelectronics and Microelectronics II (SPIE, 2005).

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Jacob, P. F.

P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
[CrossRef]

Joyeux, D.

Jueptner, W.

M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
[CrossRef]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Kang, B.-s.

Y. Yang and B.-s. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser. Eng. 49, 1254–1263 (2011).
[CrossRef]

Y. Yang and B.-s. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Tech. 23, 1670–1679 (2009).
[CrossRef]

Y. Yang, B.-s. Kang, and Y.-j. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
[CrossRef]

Y. Yang and B.-s. Kang, “Experimental validation for the determination of particle positions by the correlation coefficient method in digital particle holography,” Appl. Opt. 47, 5953–5960 (2008).
[CrossRef]

Kariwala, V.

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Khanam, T.

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Koren, G.

Kreis, T.

M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
[CrossRef]

Krishnatreya, B. J.

Lebrun, D.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
[CrossRef]

Lee, S.-J.

Lex, T.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry,” in Fundamental Problems of Optoelectronics and Microelectronics II (SPIE, 2005).

Li, G.

Loomis, N.

Malek, M.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12, 2270–2279 (2004).
[CrossRef]

Malkiel, E.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Mielenz, K. D.

K. D. Mielenz, “Algorithms for Fresnel diffraction at rectangular and circular apertures,” J. Res. Natl. Bur. Stand. 103, 497–509 (1998).
[CrossRef]

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Nurur Rahman, M.

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Panigrahi, P. K.

Park, Y.

Patte-Rouland, B.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Polack, F.

Popescu, G.

Pu, S. L.

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Rajendran, A.

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Raymond, A. S.

P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
[CrossRef]

Reu, P. L.

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).

Sattelmayer, T.

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry,” in Fundamental Problems of Optoelectronics and Microelectronics II (SPIE, 2005).

Saw, E. W.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Sergeyev, A. V.

Shaw, R. A.

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Singh, D. K.

Soulez, F.

Tang, L.

Tenenbaum, J. M.

J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1970).

Thiébaut, É.

Tian, L.

Timothy, J. S.

P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
[CrossRef]

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Wang, Z.

Wilson, L.

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Wu, X.

Wu, Y.

Yang, Y.

Zhang, R.

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42, 531–555 (2010).
[CrossRef]

Appl. Opt. (9)

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Y. Yang, B.-s. Kang, and Y.-j. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008).
[CrossRef]

Y. Yang and B.-s. Kang, “Experimental validation for the determination of particle positions by the correlation coefficient method in digital particle holography,” Appl. Opt. 47, 5953–5960 (2008).
[CrossRef]

Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48, 2983–2990 (2009).
[CrossRef]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[CrossRef]

Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011).
[CrossRef]

Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51, 255–267 (2012).
[CrossRef]

Chem. Eng. Sci. (1)

T. Khanam, M. Nurur Rahman, A. Rajendran, V. Kariwala, and A. K. Asundi, “Accurate size measurement of needle-shaped particles using digital holography,” Chem. Eng. Sci. 66, 2699–2706 (2011).
[CrossRef]

Exp. Fluids (1)

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9 (2005).
[CrossRef]

J. Mech. Sci. Tech. (1)

Y. Yang and B.-s. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Tech. 23, 1670–1679 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Res. Natl. Bur. Stand. (1)

K. D. Mielenz, “Algorithms for Fresnel diffraction at rectangular and circular apertures,” J. Res. Natl. Bur. Stand. 103, 497–509 (1998).
[CrossRef]

Lab Chip (1)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight, and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10, 1417–1428 (2010).
[CrossRef]

Meas. Sci. Technol. (2)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

P. F. Jacob, J. S. Timothy, and A. S. Raymond, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501 (2009).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Commun. (1)

M. Gu and X. S. Gan, “Effect of an ultrashort pulse on Fresnel diffraction by a circular opaque disk,” Opt. Commun. 125, 1–4 (1996).
[CrossRef]

Opt. Express (5)

Opt. Laser. Eng. (1)

Y. Yang and B.-s. Kang, “Digital particle holographic system for measurements of spray field characteristics,” Opt. Laser. Eng. 49, 1254–1263 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef]

Proc. SPIE (1)

M. Adams, T. Kreis, and W. Jueptner, “Particle analysis with digital holography,” Proc. SPIE 4101, 314–320 (2000).
[CrossRef]

Other (7)

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography reconstruction algorithms to estimate the morphology and depth of nonspherical, absorbing particles,” in SPIE Optical Engineering + Applications (SPIE, 2012).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).

V. Ilchenko, T. Lex, and T. Sattelmayer, “Depth position detection of the particles in digital holographic particle image velocimetry,” in Fundamental Problems of Optoelectronics and Microelectronics II (SPIE, 2005).

J. D’Errico, “FresnelS and FresnelC” (May 3, 2012), retrieved April 16 2012, http://www.mathworks.com/matlabcentral/fileexchange/28765-fresnels-and-fresnelc .

J. M. Tenenbaum, Accommodation in Computer Vision (Stanford University, 1970).

J.-Y. Tinevez, “Simple tracker” (August 20, 2012), retrieved December 1 2012, http://www.mathworks.com/matlabcentral/fileexchange/34040-simple-tracker .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of in-line digital holography applied to particle field: (a) recording and (b) reconstruction.

Fig. 2.
Fig. 2.

(a) Minimum intensity in the reconstructed Z direction and (b) the corresponding Z location. (c) Maximum Tenengrad in the Z direction and (d) corresponding Z location for the large square at Zo=2.979.

Fig. 3.
Fig. 3.

Detected particle regions from: (a) thresholded minimum intensity and (b) thresholded maximum Tenengrad maps given in Fig. 2. Note, the correct shape is a square of unit extent. Color indicates the detected Z location of each pixel. Artifacts in the upper-left Fig. (b) result from noise added to the simulated hologram.

Fig. 4.
Fig. 4.

Error in detected depth from: (a) the thresholded minimum intensity and (b) the thresholded maximum Tenengrad maps given in Fig. 2. Error bars indicate the standard distribution. Legend indicates the value of the applied threshold.

Fig. 5.
Fig. 5.

Illustration of hybrid particle detection method applied to the simulated large square test case at Zo=2.9973. (a) Average of the Tenengrad map along the detected edges from the thresholded minimum intensity map and (b) image of the in-focus particle at the detected optimum threshold.

Fig. 6.
Fig. 6.

Error in detected particle: (a) depth, (b) diameter, (c) width, and (d) height for the proposed hybrid method. Error bars indicate the standard distribution.

Fig. 7.
Fig. 7.

Error in detected particle: (a) depth, (b) width, and (c) height for the small rectangle test case after a second refinement where the intensity at the Z location from the first iteration is thresholded to find particle images. Error bars indicate the standard distribution.

Fig. 8.
Fig. 8.

Experimental configuration for in-line digital holography of a calibration particle field. (hwp, half-wave plate; pbs, polarizing beam splitter).

Fig. 9.
Fig. 9.

(a) Experimental hologram of spherical particles, (b) minimum intensity in the reconstructed z direction, (c) maximum Tenengrad in the z direction (scale adjusted to improve visibility of features), and (d) detected in-focus particle shapes colored by detected z location in millimeters.

Fig. 10.
Fig. 10.

Comparison of the particle size distribution of the spherical particles measured with holography and the distribution measured with the Malvern Mastersizer 2000.

Fig. 11.
Fig. 11.

Histogram of the measured displacements for the spherical particles.

Fig. 12.
Fig. 12.

Example nonspherical particle results showing: (a) the hologram and (b) the detected in-focus particle shapes colored by detected z location in millimeters.

Fig. 13.
Fig. 13.

Histogram of the measured displacements for the nonspherical particles.

Tables (1)

Tables Icon

Table 1. Nondimensional Conditions Considered in Simulations of Digital Holograms

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E(x,y;z)=[I0(x,y)Er*(x,y)]g(x,y,z).
g(x,y;z)=ejkx2+y2+z2/jλx2+y2+z2.
E(x,y,z)=I1{I{I0(x,y)}·G(fx,fy;z)},
δd2/λ,
I0(ρ;Za)/Ir=|1jπejπρ2/Za[L(u,v)M(u,v)]/Za|2.
01J0(vρ)ejuρ2/2ρdρ=[L(u,v)jM(u,v)]/2,
I0(X,Y;Zw,b)/Ir=|1+j2{C(2Zw(1X))C(2Zw(1+X))+j[S(2Zw(1X))S(2Zw(1+X))]}×{C(b2Zw(1Y))C(b2Zw(1+Y))+j[S(b2Zw(1Y))S(b2Zw(1+Y))]}|2.
0αejπσ2/2dσ=[C(α)+jS(α)],
I(X,Y;Z,b)/Ir=|I1{I{I0(X,Y;Z,b)/Ir}·G(fX,fY;Z,b)}|2,
T(x,y)=[A(x,y)Sx]2+[A(x,y)Sy]2.

Metrics