Abstract

Image decomposition and reconstruction is an important way for image analysis. To be effective for image decomposition and reconstruction, a method using extracted features through top-hat transform-based morphological contrast operator (MCOTH) is proposed in this paper. First, the morphological contrast operator constructed using the top-hat transforms is discussed. Then, extracting the bright and dark image features in the result of MCOTH is given. Based on the extracted bright and dark image features, the original images are decomposed into multiscale complete decompositions using multiscale structuring elements. After processing the decomposed images following different application purposes, the final result image can be reconstructed from the processed decomposition images. To verify the effectiveness of the proposed image analysis method through image decomposition and reconstruction, the application of image enhancement and fusion are discussed. The experimental results show that because the proposed image decomposition and reconstruction method reasonably decomposes the original image into complete decomposition with useful image features at different scales, the useful image features could be easily used for different applications. After the useful image features are processed, the final result image could be reconstructed. Moreover, different types of images are used in the experiments of image enhancement and fusion, and the results are effective. Therefore, the proposed image decomposition and reconstruction method in this paper are effective methods for image analysis and could be widely used in different applications.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform

Xiangzhi Bai, Fugen Zhou, and Bindang Xue
Opt. Express 19(9) 8444-8457 (2011)

Noise-suppressed image enhancement using multiscale top-hat selection transform through region extraction

Xiangzhi Bai, Fugen Zhou, and Bindang Xue
Appl. Opt. 51(3) 338-347 (2012)

Fusion of infrared and visible images based on focus measure operators in the curvelet domain

Shao Zhenfeng, Liu Jun, and Cheng Qimin
Appl. Opt. 51(12) 1910-1921 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription