Abstract

The application of a Brillouin distributed sensor for the monitoring of railway traffic is presented in this work. The field test is performed on the Italian regional line San Severo–Peschici, operated by Ferrovie del Gargano. A single-mode optical fiber sensor was attached along a rail length of about 60 m. The strain associated with train passage was acquired along the monitored rail length at 31 Hz acquisition rate and 1 m spatial resolution. The data acquired by the sensor demonstrates its capability of retrieving useful information in railway traffic monitoring, such as train identification, axle counting, speed detection, and dynamic load calculation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000).
    [CrossRef]
  2. T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
    [CrossRef]
  3. C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
    [CrossRef]
  4. C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).
  5. H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
    [CrossRef]
  6. M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
    [CrossRef]
  7. R. Kluth, D. Watley, M. Farhadiroushan, D. S. Park, S. U. Lee, J. Y. Kim, and Y. S. Kim, “Case studies on distributed temperature and strain sensing (DTSS) by using optic fibre,” http://www.sensornet.co.uk/files/article/Sensornet_Case_Studies_on_Distributed_Temperature_and_Strain_Sensing_(DTSS.pdf) .
  8. H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
    [CrossRef]
  9. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]
  10. A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
    [CrossRef]
  11. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
    [CrossRef]
  12. Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
    [CrossRef]
  13. T. Dahlberg, Railway Track Dynamics—A Survey (Linköping University, 2003), p. 1313.
  14. D. I. McLean and M. L. Marsh, Dynamic Impact Factors for Bridges, vol. 266National Cooperative Highway Research Program Synthesis of Highway Practice Series (Transportation Research Board, 1998).
  15. J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).
  16. M. W. Khordehbinan, “Investigation on the effect of railway track support system characteristics on the values of track modulus,” in Proceedings of AREMA (AREMA, 2010).

2012

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

2011

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

2010

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

2009

2006

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

2005

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

2000

J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000).
[CrossRef]

1997

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).

Amato, L.

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

Andrés-Alguacil, A.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Bernini, R.

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
[CrossRef]

Chan, T. H. T.

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Chana, T. H. T.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Cheng, L. K.

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Chengc, L. K.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Chung, W. H.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Chungb, W. H.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Cui, Q.

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

Dahlberg, T.

T. Dahlberg, Railway Track Dynamics—A Survey (Linköping University, 2003), p. 1313.

Eisenmann, J.

J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).

Filograno, M. L.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Gonzalés-Herraez, M.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Guan, B. O.

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Guillén, P. C.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Ho, S. L.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

Ho, T. K.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

Johansson, A.

J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000).
[CrossRef]

Khordehbinan, M. W.

M. W. Khordehbinan, “Investigation on the effect of railway track support system characteristics on the values of track modulus,” in Proceedings of AREMA (AREMA, 2010).

Kim, D. S.

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

Kim, J. S.

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

Lai, C. C.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

Liu, S.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

Liu, S. Y.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Liub, S. Y.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Marsh, M. L.

D. I. McLean and M. L. Marsh, Dynamic Impact Factors for Bridges, vol. 266National Cooperative Highway Research Program Synthesis of Highway Practice Series (Transportation Research Board, 1998).

Martin-Lopez, S.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

McCusker, A.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

McLean, D. I.

D. I. McLean and M. L. Marsh, Dynamic Impact Factors for Bridges, vol. 266National Cooperative Highway Research Program Synthesis of Highway Practice Series (Transportation Research Board, 1998).

Minardo, A.

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
[CrossRef]

Nia, Y. Q.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Nielsen, J. C. O.

J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Pamukcu, S.

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

Pervizpour, M.

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

Robert, P.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Rodrìguez-Barrios, A.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Rodriguez-Plaza, M.

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Rump, R.

J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).

Song, K. Y.

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

Tam, H.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

Tam, H. Y.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Tamb, H. Y.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Wei, C.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

Wei, C. L.

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

Wen, X.

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

Xin, Q.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

Yoon, H. J.

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

Yua, L.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

Zeni, L.

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
[CrossRef]

Eng. struct.

T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006).
[CrossRef]

ETR: Eisenbahntechnische Rundschau

J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).

IEEE Photon. Technol. Lett.

Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011).
[CrossRef]

IEEE Sens. J.

A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012).
[CrossRef]

C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010).
[CrossRef]

M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012).
[CrossRef]

Int. J. Distributed Sens. Netw.

C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).

J. Lightwave Technol.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

NDT&E Int.

H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011).
[CrossRef]

Opt. Lett.

Proc. Inst. Mech. Eng. F

J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000).
[CrossRef]

Proc. SPIE

H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005).
[CrossRef]

Other

R. Kluth, D. Watley, M. Farhadiroushan, D. S. Park, S. U. Lee, J. Y. Kim, and Y. S. Kim, “Case studies on distributed temperature and strain sensing (DTSS) by using optic fibre,” http://www.sensornet.co.uk/files/article/Sensornet_Case_Studies_on_Distributed_Temperature_and_Strain_Sensing_(DTSS.pdf) .

T. Dahlberg, Railway Track Dynamics—A Survey (Linköping University, 2003), p. 1313.

D. I. McLean and M. L. Marsh, Dynamic Impact Factors for Bridges, vol. 266National Cooperative Highway Research Program Synthesis of Highway Practice Series (Transportation Research Board, 1998).

M. W. Khordehbinan, “Investigation on the effect of railway track support system characteristics on the values of track modulus,” in Proceedings of AREMA (AREMA, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Cross section of the rail, also indicating the position of the glued fiber, and (b) layout of the fibers used for rail track monitoring.

Fig. 2.
Fig. 2.

Experimental setup employed for static and dynamic strain measurements. IM, intensity modulator; EDFA, erbium-doped fiber amplifier; PS, polarization scrambler; PD, photodiode; DAQ, data acquisition card.

Fig. 3.
Fig. 3.

Brillouin frequency shift static profile acquired along the fiber used for the dynamic test. The fiber strand attached to the rail is deployed between z=18.5m and z=80m. The peak at 10825 MHz appearing between z=11m and z=12m is due to a short fiber patch having a different Brillouin frequency shift.

Fig. 4.
Fig. 4.

Brillouin gain spectrum acquired at z=44.88m. The red square indicates the frequency set-point chosen for the dynamic measurements.

Fig. 5.
Fig. 5.

Brillouin gain map as a function of time and position. The time instants associated with train passage are between z=7.7s and z=16.5s. The red curve represents (out of scale) the Brillouin frequency shift static profile.

Fig. 6.
Fig. 6.

Strain induced by train passage as a function of time and position.

Fig. 7.
Fig. 7.

Strain acquired at the fiber position z=52.3m, as a function of time.

Fig. 8.
Fig. 8.

Axle traces retrieved from Fig. 4. The estimated axle distances are also given. Note that Δij refers to the distance between the ith and the jth axle trace, where the first axle is the first one passing any fixed position. The horizontal dashed line indicates the time instant chosen for axle distance estimation.

Fig. 9.
Fig. 9.

Strain profile acquired at the time instant t=13.9s (blue solid line), compared to the theoretical profile provided by Eq. (2) (red dashed line). The magenta arrows indicate the extension of the characteristic length.

Fig. 10.
Fig. 10.

Dynamic load associated with the first axle, computed for each fiber position.

Tables (2)

Tables Icon

Table 1. Main Properties of the Tested Train

Tables Icon

Table 2. Dynamic Load Estimation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η(z)=Pλ2Keλz(sinλz+cosλz),
ε(z)=yη(z)=yPλ2Keλz(cosλzcosλz),
P=4EJyλεMAX.

Metrics