Abstract

Using the supercell approach based on the plane wave expansion method, we analyze the photonic bandgap (PBG) of square and triangular photonic crystal slabs composed of air holes in an anisotropic tellurium background with SiO2 as cladding material. Two shapes (square and hexagonal) are considered for air holes. We discuss the maximization of the full PBG width as a function of noncircular air hole parameters, their orientation, and also slab thickness. The numerical results show that both structures represent a full PBG with noticeable width, which can be helpful for designing optical devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. D. L. Bullock, C. C. Shih, and R. S. Margulies, “Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control,” J. Opt. Soc. Am. B 10, 399–403 (1993).
    [CrossRef]
  4. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
    [CrossRef]
  6. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
    [CrossRef]
  7. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
    [CrossRef]
  8. R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
    [CrossRef]
  9. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998).
    [CrossRef]
  10. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
    [CrossRef]
  11. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  12. M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
    [CrossRef]
  13. S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
    [CrossRef]
  14. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
    [CrossRef]
  15. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
    [CrossRef]
  16. T. Liu and R. Panepucci, “Confined waveguide modes in slot photonic crystal slab,” Opt. Express 15, 4304–4309 (2007).
    [CrossRef]
  17. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Polarization and thickness dependent guiding in the photonic crystal slab waveguide,” Opt. Express 15, 8391–8400 (2007).
    [CrossRef]
  18. O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
    [CrossRef]
  19. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef]
  20. F. Wen, S. David, X. Checoury, and M. E. Kurdi, “Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations,” Opt. Express 16, 12278–12289 (2008).
    [CrossRef]
  21. P. Shi, K. Huang, X. L. Kang, and Y. P. Li, “Creation of large band gap with anisotropic annular photonic crystal slab structure,” Opt. Express 18, 5221–5228 (2010).
    [CrossRef]
  22. C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).
  23. H. Kurt, R. Hao, Y. Chen, J. Feng, J. Blair, D. P. Gaillot, C. Summers, D. S. Citrin, and Z. Zhou, “Design of annular photonic crystal slabs,” Opt. Lett. 33, 1614–1616 (2008).
    [CrossRef]
  24. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
    [CrossRef]
  25. B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
    [CrossRef]
  26. B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
    [CrossRef]
  27. T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
    [CrossRef]
  28. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  29. T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
    [CrossRef]
  30. T. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006).
    [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 2, (Academic, 1998).

2012 (1)

T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
[CrossRef]

2011 (2)

B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
[CrossRef]

T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
[CrossRef]

2010 (1)

2009 (1)

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

2008 (2)

2007 (2)

2006 (1)

T. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

2005 (2)

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

2002 (2)

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).

2001 (1)

2000 (1)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

1999 (4)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

1998 (4)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

1997 (2)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

1993 (1)

1991 (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Asano, T.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Bayat, K.

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Blair, J.

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Bostan, C. G.

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Bullock, D. L.

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Chaudhuri, S. K.

Checoury, X.

Chen, C.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
[CrossRef]

Chen, Y.

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Citrin, D. S.

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

D’Urso, B.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

David, S.

de Ridder, R. M.

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Fathollahi Khalkhali, T.

T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
[CrossRef]

T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

Feng, J.

Gaillot, D. P.

Guo, G. Y.

T. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

Hao, R.

Huang, K.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Kalafi, M.

T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

Kang, X. L.

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

Kim, K. W.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Kitagawa, H.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Krauss, T. F.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Kurdi, M. E.

Kurt, H.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

Li, Y. P.

Liu, T.

Mackenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Margulies, R. S.

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Noda, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

O’Brien, J.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

Pacradouni, V.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Paddon, P.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Painter, O.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 2, (Academic, 1998).

Panepucci, R.

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

Prather, D. W.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
[CrossRef]

Qiu, M.

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

Rahmat-Samii, Y.

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

Ramezani, A. H.

T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
[CrossRef]

Rezaei, B.

T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
[CrossRef]

T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

Safavi-Naeini, S.

Scherer, A.

Schubert, E. F.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Shi, P.

Shi, S.

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
[CrossRef]

Shih, C. C.

Soltani Vala, A.

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

Summers, C.

Takayama, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Tanaka, Y.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Tombrello, T.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

Vuckovic, J.

Wen, F.

Weng, T.

T. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities,” J. Opt. Soc. Am. B 15, 1155–1159 (1998).
[CrossRef]

Young, J. F.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

Zhou, Z.

Appl. Phys. Lett. (4)

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75, 1036–1038 (1999).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1441 (1997).
[CrossRef]

S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86, 043104 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two dimensional photonic crystal slabs,” Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

IEE Proc. Optoelectron. (2)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelectron. 145, 384–390 (1998).
[CrossRef]

R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc. Optoelectron. 145, 391–397 (1998).
[CrossRef]

J. Appl. Phys. (1)

T. Weng and G. Y. Guo, “Band structure of honeycomb photonic crystal slabs,” J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Optoelectron. Adv. Mater. (1)

C. G. Bostan and R. M. de Ridder, “Design of photonic crystal slab structures with absolute gaps in guided modes,” J. Optoelectron. Adv. Mater. 4, 921–928 (2002).

Opt. Commun. (4)

B. Rezaei, T. Fathollahi Khalkhali, A. Soltani Vala, and M. Kalafi, “Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background,” Opt. Commun. 282, 2861–2869 (2009).
[CrossRef]

B. Rezaei, T. Fathollahi Khalkhali, and M. Kalafi, “Tunable out-of-plane band gap of two-dimensional anisotropic photonic crystals infiltrated with liquid crystals,” Opt. Commun. 284, 813–817 (2011).
[CrossRef]

T. Fathollahi Khalkhali, B. Rezaei, and M. Kalafi, “Enlargement of absolute photonic band gap in modified 2D anisotropic annular photonic crystals,” Opt. Commun. 284, 3315–3322 (2011).
[CrossRef]

T. Fathollahi Khalkhali, B. Rezaei, and A. H. Ramezani, “Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal,” Opt. Commun. 285, 5254–5258 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (4)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: the triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991).
[CrossRef]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66, 033103 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78, 3294–3297 (1997).
[CrossRef]

Science (2)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 2, (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic representation of PC slab structures with (a) and (b) square lattice and (d) and (e) triangular lattice of air holes in an anisotropic Te background surrounded by SiO2 and first BZs of 2D (c) square and (f) triangular lattices.

Fig. 2.
Fig. 2.

Rotated square air holes in a square lattice with angle θ, which is defined as the angle between the axis of the square air holes’ cross section and the lattice axis.

Fig. 3.
Fig. 3.

Gap width and gap–midgap ratio versus (a) slab thickness for r=0.45a and θ=0°, (b) side length of hexagonal air holes for h=0.50a and θ=0°, and (c) rotation angle of hexagonal air holes for r=0.45a and h=0.50a in a square-lattice slab.

Fig. 4.
Fig. 4.

Band structure of even modes (solid lines) and odd modes (dashed lines) for a square-lattice PC slab of hexagonal air holes in a Te background surrounded by SiO2 at the optimum values of r=0.45a, θ=0° and h=0.50a. The full bandgap is represented by the gray area, and the states above the light line (pink area) are extended states.

Fig. 5.
Fig. 5.

Gap width and gap–midgap ratio versus (a) slab thickness for r=0.38a and θ=30°, (b) half-side length of square air holes for h=0.51a and θ=30°, and (c) rotation angle of square air holes for r=0.38a and h=0.51a in a square-lattice slab.

Fig. 6.
Fig. 6.

Band structure of even modes (solid lines) and odd modes (dashed lines) for a square-lattice PC slab of square air holes in a Te background surrounded by SiO2 at the optimum values of r=0.38a, θ=30°, and h=0.51a.

Fig. 7.
Fig. 7.

Gap width and gap–midgap ratio versus (a) slab thickness for r=0.37a and θ=0°, (b) half-side length of square air holes for h=0.80a and θ=0°, and (c) rotation angle of square air holes for r=0.35a and h=0.80a in a triangular-lattice slab.

Fig. 8.
Fig. 8.

Band structure of even modes (solid lines) and odd modes (dashed lines) for a triangular-lattice PC slab of square air holes in a Te background surrounded by SiO2 at the optimum values of r=0.37a, θ=0°, and h=0.80a. The full bandgap is represented by gray areas, and the states above the light line (pink area) are extended states.

Fig. 9.
Fig. 9.

Gap width and gap–midgap ratio versus (a) slab thickness for r=0.52a and θ=15°, (b) side length of hexagonal air holes for h=0.80a and θ=15°, and (c) rotation angle of hexagonal air holes for r=0.52a and h=0.80a in a triangular-lattice slab.

Fig. 10.
Fig. 10.

Band structure of even modes (solid line) and odd modes (dashed line) for a triangular-lattice PC slab of hexagonal air holes in a Te background surrounded by SiO2 at the optimum values of r=0.52a, θ=15°, and h=0.80a.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ωc>knc,

Metrics