Abstract

An electro-optical Q-switched RF-excited Z-fold CO2 waveguide laser was designed, which can output a Q-switched laser and a cavity-dumped laser synchronously. The build-up time method is presented to stabilize the laser frequency. A closed-loop control system was designed to keep the laser oscillating at the peak of the gain curve by measuring the pulse build-up time continuously and controlling the cavity length. In the experiment, the variations for the pulse build-up time and cavity-dumped laser output power with time were recorded in a period of time. The frequency fluctuation is less than ±16MHz

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Willis and M. J. Lim, “Temperature-insensitive laser frequency stabilization with magnetic tuning,” Appl. Opt. 47, 2312–2316 (2008).
    [CrossRef]
  2. B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
    [CrossRef]
  3. K. Chen and Q. Zhu, “Self-organized fuzzy controller for multiwavelength frequency-stabilized CO2 laser,” Opt. Eng. 36, 2503–2507 (1997).
    [CrossRef]
  4. T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
    [CrossRef]
  5. Z. L. Bian, C. D. Huang, D. J. Chen, J. B. Peng, M. Gao, Z. R. Dong, J. Q. Liu, H. W. Cai, R. H. Qu, and S. Q. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
    [CrossRef]
  6. R. Kohlhaas, T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin, and P. Bouyer, “Robust laser frequency stabilization by serrodyne modulation,” Opt. Lett. 37, 1005–1007 (2012).
    [CrossRef]
  7. J. T. Shy and T. C. Yen, “Optogalvanic Lamb-dip frequency stabilization of a sequence-band CO2 laser,” Opt. Lett. 12, 325–328 (1987).
    [CrossRef]
  8. Y. W. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng. 41, 3319–3323 (2002).
    [CrossRef]
  9. S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
    [CrossRef]
  10. R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
    [CrossRef]
  11. J. Qian, Z. Y. Liu, C. Y. Shi, X. Y. Liu, J. B. Wang, C. Yin, and S. Cai, “Frequency stabilization of internal-mirror He–Ne lasers by air cooling,” Appl. Opt. 51, 6084–6088 (2012).
    [CrossRef]
  12. A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
    [CrossRef]
  13. Y. S. Zhang, C. Q. Gao, M. W. Gao, Y. Zheng, L. Wang, and R. Wang, “Frequency stabilization of a single-frequency Q-switched Tm:YAG laser by using injection seeding technique,” Appl. Opt. 50, 4232–4236 (2011).
    [CrossRef]
  14. Z. S. Tian, B. Hussein, and Q. Wang, “Tunable electro-optically Q-switched rf excited partial Z-fold CO2 waveguide laser with two channels,” Opt. Eng. 44, 024202 (2005).
    [CrossRef]
  15. Z. S. Tian, S. L. Qu, and Z. H. Sun, “Active and passive frequency stabilization for a Q-switched Z-fold radio-frequency-excited waveguide CO2 laser with two channels,” Appl. Opt. 44, 6269–6273 (2005).
    [CrossRef]
  16. Y. D. Sun, S. Y. Fu, J. Wang, Z. H. Sun, Y. C. Zhang, Z. S. Tian, and Q. Wang, “Optically pumped terahertz lasers with high pulse repetition frequency: theory and design,” Chin. Opt. Lett. 7, 127–129 (2009).
    [CrossRef]

2012 (3)

2011 (1)

2010 (1)

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

2009 (1)

2008 (1)

2005 (2)

Z. S. Tian, S. L. Qu, and Z. H. Sun, “Active and passive frequency stabilization for a Q-switched Z-fold radio-frequency-excited waveguide CO2 laser with two channels,” Appl. Opt. 44, 6269–6273 (2005).
[CrossRef]

Z. S. Tian, B. Hussein, and Q. Wang, “Tunable electro-optically Q-switched rf excited partial Z-fold CO2 waveguide laser with two channels,” Opt. Eng. 44, 024202 (2005).
[CrossRef]

2002 (1)

Y. W. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng. 41, 3319–3323 (2002).
[CrossRef]

2001 (1)

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

1998 (1)

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

1997 (1)

K. Chen and Q. Zhu, “Self-organized fuzzy controller for multiwavelength frequency-stabilized CO2 laser,” Opt. Eng. 36, 2503–2507 (1997).
[CrossRef]

1995 (1)

S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
[CrossRef]

1994 (1)

A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
[CrossRef]

1987 (1)

Amy-Klein, A.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Bernon, S.

Bertoldi, A.

Bian, Z. L.

Bouyer, P.

Cai, H. W.

Cai, S.

Chardonnet, C.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Chen, D. J.

Chen, K.

K. Chen and Q. Zhu, “Self-organized fuzzy controller for multiwavelength frequency-stabilized CO2 laser,” Opt. Eng. 36, 2503–2507 (1997).
[CrossRef]

Chou, C. C.

S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
[CrossRef]

Chow, J. H.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Constantin, L. F.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Cruz, F. C.

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Daussy, C.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Dong, Z. R.

Frech, B.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Fu, S. Y.

Gao, C. Q.

Gao, M.

Gao, M. W.

Gong, S. Q.

Huang, C. D.

Hussein, B.

Z. S. Tian, B. Hussein, and Q. Wang, “Tunable electro-optically Q-switched rf excited partial Z-fold CO2 waveguide laser with two channels,” Opt. Eng. 44, 024202 (2005).
[CrossRef]

Kawaguchi, S.

A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
[CrossRef]

Kohlhaas, R.

Lam, T. T.-Y.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Landragin, A.

Liang, D.

Y. W. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng. 41, 3319–3323 (2002).
[CrossRef]

Lim, M. J.

Littler, I. C. M.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Liu, J. Q.

Liu, X. Y.

Liu, Z. Y.

Ma, Y. W.

Y. W. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng. 41, 3319–3323 (2002).
[CrossRef]

McClelland, D. E.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Mürtz, M.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Peng, J. B.

Pereira, D.

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Phavorin, O.

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Qian, J.

Qu, R. H.

Qu, S. L.

Scalabrin, A.

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Shaddock, D. A.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Shi, C. Y.

Shy, J. T.

S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
[CrossRef]

J. T. Shy and T. C. Yen, “Optogalvanic Lamb-dip frequency stabilization of a sequence-band CO2 laser,” Opt. Lett. 12, 325–328 (1987).
[CrossRef]

Slagmolen, B. J. J.

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

Suda, A.

A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
[CrossRef]

Sun, Y. D.

Sun, Z. H.

Tashiro, H.

A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
[CrossRef]

Telles, T. M.

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Tian, Z. S.

Tochitsky, S. Y.

S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
[CrossRef]

Vanderbruggen, T.

Viscovini, R. C.

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Wang, J.

Wang, J. B.

Wang, L.

Wang, Q.

Y. D. Sun, S. Y. Fu, J. Wang, Z. H. Sun, Y. C. Zhang, Z. S. Tian, and Q. Wang, “Optically pumped terahertz lasers with high pulse repetition frequency: theory and design,” Chin. Opt. Lett. 7, 127–129 (2009).
[CrossRef]

Z. S. Tian, B. Hussein, and Q. Wang, “Tunable electro-optically Q-switched rf excited partial Z-fold CO2 waveguide laser with two channels,” Opt. Eng. 44, 024202 (2005).
[CrossRef]

Wang, R.

Willis, L. J.

Yen, T. C.

Yin, C.

Zhang, Y. C.

Zhang, Y. S.

Zheng, Y.

Zhu, Q.

K. Chen and Q. Zhu, “Self-organized fuzzy controller for multiwavelength frequency-stabilized CO2 laser,” Opt. Eng. 36, 2503–2507 (1997).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

B. Frech, L. F. Constantin, A. Amy-Klein, O. Phavorin, C. Daussy, C. Chardonnet, and M. Mürtz, “Frequency measurements of saturated-fluorescence-stabilized CO2 laser lines: comparison with an OsO4-stabilized CO2 laser standard,” Appl. Phys. B 67, 217–221 (1998).
[CrossRef]

Chin. Opt. Lett. (2)

IEEE J. Quantum Electron. (3)

T. T.-Y. Lam, B. J. J. Slagmolen, J. H. Chow, I. C. M. Littler, D. E. McClelland, and D. A. Shaddock, “Digital laser frequency stabilization using an optical cavity,” IEEE J. Quantum Electron. 46, 1178–1183 (2010).
[CrossRef]

S. Y. Tochitsky, C. C. Chou, and J. T. Shy, “Frequency stabilization of the sequence-band CO2 laser using the 4.3 μm fluorescence method,” IEEE J. Quantum Electron. 31, 1223–1230 (1995).
[CrossRef]

A. Suda, H. Tashiro, and S. Kawaguchi, “Line narrowing and frequency stabilization of high-pressure CO2 laser by means of injection locking with multi-isotope master oscillator,” IEEE J. Quantum Electron. 30, 2670–2675 (1994).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

R. C. Viscovini, F. C. Cruz, T. M. Telles, A. Scalabrin, and D. Pereira, “Frequency stabilization of waveguide CO2 laser by a digital technique,” Int. J. Infrared Millim. Waves 22, 757–772 (2001).
[CrossRef]

Opt. Eng. (3)

Z. S. Tian, B. Hussein, and Q. Wang, “Tunable electro-optically Q-switched rf excited partial Z-fold CO2 waveguide laser with two channels,” Opt. Eng. 44, 024202 (2005).
[CrossRef]

Y. W. Ma and D. Liang, “Tunable and frequency-stabilized CO2 waveguide laser,” Opt. Eng. 41, 3319–3323 (2002).
[CrossRef]

K. Chen and Q. Zhu, “Self-organized fuzzy controller for multiwavelength frequency-stabilized CO2 laser,” Opt. Eng. 36, 2503–2507 (1997).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of the Q-switched laser.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for frequency stabilization of Q-switched laser.

Fig. 3.
Fig. 3.

(a) Waveform of Q-switched laser (100s/div). (b) Waveform of cavity-dumped laser (40ns/div).

Fig. 4.
Fig. 4.

Variation of the pulse laser build-up time and cavity laser output power with time in open-loop operation.

Fig. 5.
Fig. 5.

Variation of the pulse laser build-up time and cavity laser output power with time in closed operation.

Fig. 6.
Fig. 6.

Frequency fluctuations of the laser in open-loop and closed-loop operation.

Metrics