Abstract

Silver/silver halide-coated hollow-glass waveguides (HGWs) are capable of low-loss, broadband transmission at infrared wavelengths with the advantage of optical response tunability through alteration of a number of key design parameters. Generally, the design of circular HGWs has primarily involved optimization of the waveguide bore size and deposited film structure in order to obtain the desired optical response, with the waveguide bore size being held constant as a function of length. In this study, the effects of HGW structures consisting of linearly tapered inner diameters on the optical response at infrared wavelengths are theoretically and experimentally investigated. Theoretical analysis involving numerical ray optics methods accounting for the dynamic nature of bore size, and consequently light propagation, along the waveguide length is presented and compared to experimental results in order to gain a deeper understanding of these atypical HGW structures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  2. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  3. D. J. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
    [CrossRef]
  4. D. J. Gibson and J. A. Harrington, “Gradually tapered hollow glass waveguides for the transmission of CO2 laser radiation,” Appl. Opt. 43, 2231–2235 (2004).
    [CrossRef]
  5. C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
    [CrossRef]
  6. M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” IEEE J. Lightwave Technol. LT-3, 303–307 (1985).
    [CrossRef]
  7. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  8. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  9. K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  10. C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
    [CrossRef]

2012

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

2004

1999

D. J. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

1996

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

1989

1985

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” IEEE J. Lightwave Technol. LT-3, 303–307 (1985).
[CrossRef]

1984

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Bledt, C. M.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Gibson, D. J.

D. J. Gibson and J. A. Harrington, “Gradually tapered hollow glass waveguides for the transmission of CO2 laser radiation,” Appl. Opt. 43, 2231–2235 (2004).
[CrossRef]

D. J. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

Harrington, J. A.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

D. J. Gibson and J. A. Harrington, “Gradually tapered hollow glass waveguides for the transmission of CO2 laser radiation,” Appl. Opt. 43, 2231–2235 (2004).
[CrossRef]

D. J. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kino, S.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

Kopp, D. V.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

Kriesel, J. M.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Miyagi, M.

Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” IEEE J. Lightwave Technol. LT-3, 303–307 (1985).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Saito, M.

Appl. Opt.

IEEE J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” IEEE J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, “Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment,” IEEE J. Lightwave Technol. LT-3, 303–307 (1985).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

K. Matsuura, Y. Matsuura, and J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Proc. SPIE

D. J. Gibson and J. A. Harrington, “Tapered and noncircular hollow glass waveguides,” Proc. SPIE 3596, 8–13 (1999).
[CrossRef]

C. M. Bledt, D. V. Kopp, J. A. Harrington, S. Kino, Y. Matsuura, and J. M. Kriesel, “Investigation of tapered silver/silver halide coated hollow glass waveguides for the transmission of CO2 laser radiation,” Proc. SPIE 8218, 821802 (2012).
[CrossRef]

Other

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Ray propagation in (a) smaller, (b) larger constant bore HGWs, (c) positive, and (d) negative linearly tapered bore HGWs.

Fig. 2.
Fig. 2.

Normalized power transmission as a function of output angle for increasing and decreasing bore tapered Ag/AgI HGW.

Fig. 3.
Fig. 3.

Theoretical FWHM as a function of beam projection distance for determining divergence angles of tapered HGWs.

Fig. 4.
Fig. 4.

(a) Silver film deposition and (b) iodization procedures.

Fig. 5.
Fig. 5.

IR spectral response of tapered Ag/AgI HGW sample.

Fig. 6.
Fig. 6.

Attenuation as a function of bending for tapered and constant bore HGWs with AgI film thickness d880890nm.

Fig. 7.
Fig. 7.

2D spatial power density distribution profile using the (a) 300 μm ID and (b) 650 μm ID end as input at d=10, 30, and 50 mm.

Fig. 8.
Fig. 8.

Output beam profiles at d=30mm for straight and bent (a) 700 μm constant ID, (b) decreasing 650300μm tapered ID, (c) 300 μm constant ID, and (d) increasing 300–650 μm tapered ID Ag/AgI HGWs.

Tables (3)

Tables Icon

Table 1. Optimal Coupling Parameters

Tables Icon

Table 2. Calculated HGW Attenuation

Tables Icon

Table 3. Measured Output Beam Divergence

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α(θ,λ)=1R(θ,λ)4acot(θ),
[afaiL1tan1(θn1)1][xnyn]=[aiyn1],
θn=θn1|θn1|(|θn1|2φ).
|θN|=|θi|2Nφ,
dF=λ2πnF21tan1(nFnF214),

Metrics