Abstract

This paper reports on a simulation-based investigation of a wavelength diverse free-space optical link with an emphasis on identifying design choices that optimize the performance of the system under different operating scenarios. The simulation incorporates experimental data into the theoretical calculations for optical propagation to better describe the performance of the physical designs. The performance is evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters, such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The investigation finds that the coverage area of the receiver can be optimized for a given wavelength by proper choices of these parameters, and that parameter choices exist that minimize the change in performance when switching between wavelengths or for variations in link parameters. The interrelationships among key parameters and their impact on the potential system performance are investigated. The results provide guidance on the further development of the overall system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.
  2. D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
    [CrossRef]
  3. M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
    [CrossRef]
  4. A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
    [CrossRef]
  5. A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
    [CrossRef]
  6. S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).
  7. D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
    [CrossRef]
  8. D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
    [CrossRef]
  9. D. Zhou, P. G. LoPresti, and H. H. Refai, “Enlargement of beam coverage in FSO mobile network,” J. Lightwave Technol. 29, 1583–1589 (2011).
    [CrossRef]
  10. P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
    [CrossRef]
  11. P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
    [CrossRef]
  12. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 157–159.
  13. F. T. S. Yu, Optical Information Processing (Wiley-Interscience, 1983), pp. 148–151.
  14. F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

2012 (2)

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

2011 (3)

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
[CrossRef]

D. Zhou, P. G. LoPresti, and H. H. Refai, “Enlargement of beam coverage in FSO mobile network,” J. Lightwave Technol. 29, 1583–1589 (2011).
[CrossRef]

2010 (2)

D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
[CrossRef]

S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).

2009 (1)

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

2006 (2)

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

Andrews, L. C.

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

Bilgi, M.

A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Brooks, N.

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

Brown, D. M.

Burris, H. R.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Greco, J.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Hahn, D. V.

Harris, A.

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 157–159.

Henion, S.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Leclerc, T.

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

LoPresti, P. G.

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
[CrossRef]

D. Zhou, P. G. LoPresti, and H. H. Refai, “Enlargement of beam coverage in FSO mobile network,” J. Lightwave Technol. 29, 1583–1589 (2011).
[CrossRef]

S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

Magliocco, R.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Miller, T.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Moore, C. I.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Murphy, R.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Nowak, S. M.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Pala, N.

A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Parenti, R.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Peters, J.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Phillips, R. L.

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

Pondelik, S.

S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).

Refai, H.

P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
[CrossRef]

S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

Refai, H. H.

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

D. Zhou, P. G. LoPresti, and H. H. Refai, “Enlargement of beam coverage in FSO mobile network,” J. Lightwave Technol. 29, 1583–1589 (2011).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

Rolander, N. W.

Roth, J.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Sauer, P.

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

Sevincer, A.

A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Shi, Z.

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

Sluss, J. J.

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

Sluz, J. E.

Smith, W. R.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Taylor, J.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Thomas, L. M.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Venkat, R.

Vilcheck, M. J.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Volpicelli, A.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Walther, F. G.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Wasiczko-Thomas, L. M.

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

Wayne, D. T.

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

Wilcox, W.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Williams, T.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

Yu, F. T. S.

F. T. S. Yu, Optical Information Processing (Wiley-Interscience, 1983), pp. 148–151.

Yuksel, M.

A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Zhou, D.

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
[CrossRef]

D. Zhou, P. G. LoPresti, and H. H. Refai, “Enlargement of beam coverage in FSO mobile network,” J. Lightwave Technol. 29, 1583–1589 (2011).
[CrossRef]

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. 45, 86001 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (7)

D. T. Wayne, R. L. Phillips, L. C. Andrews, T. Leclerc, and P. Sauer, “Observation and analysis of aero-optic effects on the ORCA laser communication system,” Proc. SPIE 8038, 80380A (2011).
[CrossRef]

M. J. Vilcheck, H. R. Burris, C. I. Moore, W. R. Smith, L. M. Thomas, and L. M. Wasiczko-Thomas, “Miniature lasercomm module for integration into a small, unmanned, aerial platform,” Proc. SPIE 8380, 838003 (2012).
[CrossRef]

A. Harris, J. J. Sluss, H. H. Refai, and P. G. LoPresti, “Atmospheric turbulence effects on a wavelength diversified ground-to-UAV FSO link,” Proc. SPIE 6105, 61050S (2006).
[CrossRef]

S. Pondelik, P. G. LoPresti, and H. Refai, “Experimental evaluation of a misalignment tolerant FSO receiver,” Proc. SPIE 7865, 76850B (2010).

D. Zhou, P. G. LoPresti, N. Brooks, and H. Refai, “Evaluation of free-space optical fiber bundle transmitter configurations for receiver tracking,” Proc. SPIE 7324, 73240K (2009).
[CrossRef]

P. G. LoPresti, D. Zhou, and H. Refai, “Evaluation of the performance of a fiber-bundle-based optical wireless link,” Proc. SPIE 8038, 80380I (2011).
[CrossRef]

P. G. LoPresti, D. Zhou, Z. Shi, and H. H. Refai, “Design simulation and analysis of a fiber-bundle based optical wireless link,” Proc. SPIE 8380, 838006 (2012).
[CrossRef]

Other (4)

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002), pp. 157–159.

F. T. S. Yu, Optical Information Processing (Wiley-Interscience, 1983), pp. 148–151.

F. G. Walther, S. M. Nowak, R. Parenti, J. Roth, J. Taylor, W. Wilcox, R. Murphy, J. Greco, J. Peters, T. Williams, S. Henion, R. Magliocco, T. Miller, and A. Volpicelli, “Air-to-ground lasercom system demonstration,” in Military Communications Conference (2010), pp. 2295–2301.

A. Sevincer, M. Bilgi, M. Yuksel, and N. Pala, “Prototyping multi-transceiver free-space-optical communication structures,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

System under study for the simulation.

Fig. 2.
Fig. 2.

Experimental system setup showing the major transmitter and receiver.

Fig. 3.
Fig. 3.

Received power measured experimentally with different zfl values for (a) one transmitter output at 1310 nm, (b) three transmitter outputs at 1310 nm, (c) one transmitter output at 1550 nm, and (d) three transmitter outputs at 1550 nm.

Fig. 4.
Fig. 4.

Collected power simulated with different zfl values for (a) one transmitter output at 1310 nm, (b) three transmitter outputs at 1310 nm, (c) one transmitter output at 1550 nm, and (d) three transmitter outputs at 1550 nm (zfl=74.7mm).

Fig. 5.
Fig. 5.

Coverage area at 850 nm. (a) 2 mW, three lenses; (b) 5 mW, three lenses; (c) 2 mW, seven lenses; (d) 5 mW, seven lenses; and (e) beam waist at 850 nm.

Fig. 6.
Fig. 6.

Calculated power collected by the receiver at 850 nm as a function of horizontal and vertical translation (lower left and lower right axes, respectively) of the receiver’s optical axis with respect to the optical axis of the transmitter. For all cases the transmitted power is 5 mW, zL=200m, and number of receiver lenses is seven. (a) zfl=48.25mm. (b) zfl=48.5mm. (c) zfl=48.75mm. (d) zfl=49mm. (e) zfl=49.25mm. (f) zfl=49.5mm. (g) zfl=50mm.

Fig. 7.
Fig. 7.

Coverage area at 1310 nm. (a) 2 mW, three lenses; (b) 5 mW, three lenses; (c) 2 mW, seven lenses; (d) 5 mW, seven lenses; and (e) beam waist at 1310 nm.

Fig. 8.
Fig. 8.

Coverage area at 1550 nm. (a) 2 mW, three lenses; (b) 5 mW, three lenses; (c) 2 mW, seven lenses; (d) 5 mW, seven lenses; and (e) beam waist at 1550 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

q(zL)=Aqo+BCqo+B,
[ABCD]=[1zL01][101fTx1][1zfl01],
1q(zL)=1R(zL)iλπw2(zL);1qo=iλπwo2,
fTx=nL/(nL1)1.5/(1.51)fTx1550,
nL=x+1,
x=1.039612λ2λ20.006+0.231792344λ2λ20.020018+1.01047λ2λ2103.56,
Uout=1iλfRxexp(ik(2fRx)(xf2+yf2))F(Uinexp(ik2fRx(xin2+yin2))),
Uin=Etotal*Tlens,
Tlens=exp(iknLt)exp(ik(nL1)*(RlRr))
Rl,r=R1,2*(11(xin2+yin2)R1,22),

Metrics