Abstract

Simulations show that the cumbersome diffraction losses occurring in narrow bandpass thin-film Fabry–Perot filters (TF-FP filters) inserted between two narrow-core optical fibers are strongly reduced by introducing into the filter a pair of film materials with high refraction index contrast. They are even further reduced by transforming the optically resonant layers of the filter into gradient index photo-refractive resonant lenses. This permits the design of compact TF-FP filters between fibers with passbands as narrow as those of TF-FP filters deposited on bulk substrates.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bittebierre, “Three-dimensional simulation of diffraction and absorption losses in all-fiber multilayer filters,” Appl. Opt. 47, C13–C24 (2008).
    [CrossRef]
  2. A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.
  3. F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase shifts UV-written band-pass filters in optical fibers,” J. Lightwave Technol. 15, 1433–1437 (1997).
    [CrossRef]
  4. J. Bittebierre and B. Lazaridès, “Narrow hybrid band pass filters with broad rejection band for single mode waveguides,” Appl. Opt. 40, 11–19 (2001).
    [CrossRef]
  5. J. Lumeau, M. Cathelinaud, J. Bittebierre, and M. Lequime, “Ultranarrow bandpass hybrid filter with wide rejection band,” Appl. Opt. 45, 1328–1332 (2006).
    [CrossRef]
  6. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett. 25, 1502–1504 (2000).
    [CrossRef]
  7. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
    [CrossRef]
  8. F. R. Flory, Thin Films for Optical Systems (Marcel Dekker, 1995).
  9. M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
    [CrossRef]
  10. S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
    [CrossRef]

2008 (1)

2007 (1)

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

2006 (1)

2003 (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

2001 (1)

2000 (1)

1998 (1)

S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
[CrossRef]

1997 (1)

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase shifts UV-written band-pass filters in optical fibers,” J. Lightwave Technol. 15, 1433–1437 (1997).
[CrossRef]

Bakhti, F.

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase shifts UV-written band-pass filters in optical fibers,” J. Lightwave Technol. 15, 1433–1437 (1997).
[CrossRef]

Bengin, V.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Bittebierre, J.

Cathelinaud, M.

Cordier, P. J.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Depecker, C.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Douay, M.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Flory, F.

S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
[CrossRef]

Flory, F. R.

F. R. Flory, Thin Films for Optical Systems (Marcel Dekker, 1995).

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Gatto, A.

S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
[CrossRef]

Georges, D.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Gerken, M.

Hamel, A.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Harris, J. S.

Lancry, M.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Lazaridès, B.

Lequime, M.

Lin, C.-C.

Lumeau, J.

Malavieille, F. L.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Mathieu, M. P.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Menard, S.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Miller, D. A. B.

Nelson, B. E.

Niay, P.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Pelletier, E.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Piestun, R.

Poumellec, B.

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Richier, R.

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Sansonetti, P.

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase shifts UV-written band-pass filters in optical fibers,” J. Lightwave Technol. 15, 1433–1437 (1997).
[CrossRef]

Tisserand, S.

S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

S. Tisserand, F. Flory, and A. Gatto, “Titanium implantation in bulk and thin film amorphous silica,” J. Appl. Phys. 83, 5150–5154 (1998).
[CrossRef]

J. Lightwave Technol. (1)

F. Bakhti and P. Sansonetti, “Design and realization of multiple quarter-wave phase shifts UV-written band-pass filters in optical fibers,” J. Lightwave Technol. 15, 1433–1437 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Lancry, B. Poumellec, V. Bengin, P. Niay, M. Douay, C. Depecker, and P. J. Cordier, “Mechanism of photosensitivity enhancement in OH-flooded standard Germano-silicate perform plates,” J. Non-Cryst. Solids 353, 69–76 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[CrossRef]

Other (2)

F. R. Flory, Thin Films for Optical Systems (Marcel Dekker, 1995).

A. Hamel, M. P. Mathieu, D. Georges, F. L. Malavieille, S. Menard, R. Richier, and E. Pelletier, “Multiplexeur optique 1480/1550  nm pour amplification optique à fibre dopée,” Proceedings of the Conference OPTO, Paris (ESI Publications, 1992), pp. 22–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Intensity of the electromagnetic field at the transmission peak wavelength in a single Fabry–Perot filter between single mode fibers (180 contours in the cylindrical r, z coordinates of a longitudinal section of the fibered filter). In the figure, the input and output fibers, so as the uniform fictive fibers representing the layers of the filter, have a 20 μm radius, which gives the scale along ρ. The intensity represented up to the condition limit boundaries at an 80 μm diameter do not significantly overstep the fibers diameter. The input and output fibers are represented with a 1 μm length, which scales the z direction. The filter F15 described later on is represented on the figure. The high diffraction in this filter appears with the following features: (a) a considerable amount of incident light is reflected in the input fiber even at the resonant wavelength of the filter; (b) the intensity in the resonant layer expands broadly in comparison to the diameter of the input and output fiber cores.

Fig. 2.
Fig. 2.

T11 at 1550 nm for several single FP filters Fpq in function of their finesse F. The calculated points marked on the lines correspond to increasing values of p or q starting from zero and increased with a step one. As the marked points are confusing near F=0, it is useful to precise that e.g., near F=150, the marked points correspond to the filters F15, F22, F34, and F42.

Fig. 3.
Fig. 3.

Compared T11 spectra for the filter [F22]3 (high Δnz) and the filter [F15]3 (low Δnz) with sensibly the same finesse F136.

Fig. 4.
Fig. 4.

Spectra of T11 and T12 for the [F22]3 filter.

Fig. 5.
Fig. 5.

Schematic of a fibered double TF-FP filter with gradient index resonant layers. M represents the mirrors of the FP.

Fig. 6.
Fig. 6.

Alignment principle of the UV laser beam. LA=UV+visible laser, LE=lens, S=alignment substrate, F=optical fiber, PD=photodiode, V=vacuum evaporation chamber. The alignment is achieved at the end of the deposition of every resonant layer. During the tilt alignment, the laser beam is auto-collimated on the alignment substrate by tilting together the parallel mirrors as indicated on the figure, and by simultaneously shifting the lens axially to adjust the waist of the Gaussian UV beam. The ensemble, composed of the laser and the two parallel mirrors, is then shifted transversally until it is aligned to one of the fibers. The transversal shift is optimized thanks to a photodiode at the end of each of the fibers. The PD multimeter must be available to provide the information outside of the vacuum chamber, or the chamber must be equipped with a passage for the fiber bundle.

Fig. 7.
Fig. 7.

(a) T11 at the peak wavelength of the filter [F22g,M=80]3 for w=5500nm in the function of δn0. (b) T11 at the peak wavelength of the filter [F22g,M=80]3 for δn0=4.5×103 in the function of w.

Fig. 8.
Fig. 8.

T11 spectrum of the filter [F22g,M=1]3 for combined misalignments of the UV beam and extinction coefficients of the thin films (tilts are in rd and shifts in micrometer).

Fig. 9.
Fig. 9.

(a) T11 spectrum of the filter [F22g,M=20]3 for various shifts in micrometer of the UV beam from the input and output fiber axes. (b) T11 spectrum of the filter [F22g,M=20]3 for various tilts in rd of the UV beam from the input and output fiber axes. (c) T11 spectrum of the filter [F22g,M=20]3 for various uniform extinction coefficients k of the thin films. (d) T11 spectrum of the filter [F22g,M=20]3 for combined misalignments of the UV beam and extinction coefficients of the thin films (tilts are in rd and shifts in micrometer).

Fig. 10.
Fig. 10.

T11 spectrum of filter [F22g,M=80]3 for combined misalignments of the UV beam and extinction coefficients of the thin films (tilts are in rd and shifts in micrometer).

Fig. 11.
Fig. 11.

T11 spectrum of filter [F23g,M=2.00070]3 for combined misalignments of the UV beam and extinction coefficients of the thin films (tilts are in rd and shifts in micrometer).

Tables (2)

Tables Icon

Table 1. Improved Thin Film Fibered FP Properties Compared to Other Available Fibered FP Technologies

Tables Icon

Table 2. Filter’s Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F1q=SMF28e_(H1L)q_H1_2L_H1_(H1L)q_SMF28e,
F2q=SMF28e_(H2L)q_H2_2L_H2_(H2L)q_SMF28e,
F3q=SMF28e_(H2L)q_H1_2L_H1_(H2L)n_SMF28e,
F4q=SMF28e_(H2L)q_(H1L)_H1_2L_(H1L)_H1_(H2L)q_SMF28e.
δnρ=δn0exp2ρ2w2,

Metrics