Abstract

An in-line fiber quasi-Michelson interferometer (IFQMI) working on reflection is proposed and experimentally demonstrated. The sensing head is fabricated by splicing a section of polarization-maintaining photonic crystal fiber (PM-PCF) with a lead-in single mode fiber (SMF). Some cladding modes are excited into the PM-PCF via the mismatch-core splicing interface between PM-PCF and SMF. Besides, two orthogonal polarized-modes are formed due to the inherent multiholes cladding structure of the PM-PCF. A well-defined interference pattern is obtained as the result of cladding-orthogonal modes interference. The IFQMI with 20 cm long PM-PCF is proposed for strain and torsion measurements. A strain sensitivity of 1.3pm/με and a torsion sensitivity of 19.17pm/deg are obtained, respectively. The proposed device with 10 cm long PM-PCF exhibits a considered temperature sensitivity of 9.9pm/°C. The IFQMI has a compact structure and small size, making it a good candidate for multiparameter measurements.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Mater. Express 12, 4490–4495 (2004).
    [CrossRef]
  2. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
  3. T. Matsui, K. Nakajima, and C. Fukai, “Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands,” J. Lightwave Technol. 27, 5410–5416 (2009).
    [CrossRef]
  4. G. Kakarantzas, A. Ortigosa-Blanch, T. A. Birks, P. St. J. Russell, L. Farr, F. Couny, and B. J. Mangan, “Structural rocking filters in highly birefringent photonic crystal fiber,” Opt. Lett. 28, 158–160 (2003).
    [CrossRef]
  5. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
    [CrossRef]
  6. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  7. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
  8. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325–1327 (2000).
    [CrossRef]
  9. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [CrossRef]
  10. T. Martynkien, G. Statkiewicz Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
    [CrossRef]
  11. D. R. Chen, G. F. Hu, and L. X. Chena, “Pressure/temperature sensor based on a dual-core photonic crystal fiber,” SPIE-OSA-IEEE. 8307, 83071N (2011).
    [CrossRef]
  12. O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
    [CrossRef]
  13. Z. Y. Liu, M. Leung Vincent Tse, C. Wu, D. R. Chen, C. Lu, and Hwa-Yaw Tam, “Intermodal coupling of supermodes in a twin core photonic crystal fiber and its application as a pressure sensor,” Opt. Express 20, 21749–21757 (2012).
    [CrossRef]
  14. J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).
  15. C. Y. Shen, C. Zhong, Y. You, J. L. Chu, X. Zou, X. Y. Dong, Y. X. Jin, J. F. Wang, and H. P. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach–Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20, 15406–15417 (2012).
  16. H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
    [CrossRef]
  17. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
  18. B. Dong, D. P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
  19. H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
    [CrossRef]

2013 (1)

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

2012 (2)

2011 (2)

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

D. R. Chen, G. F. Hu, and L. X. Chena, “Pressure/temperature sensor based on a dual-core photonic crystal fiber,” SPIE-OSA-IEEE. 8307, 83071N (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (1)

2007 (3)

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach–Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
[CrossRef]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

2006 (1)

2004 (1)

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Mater. Express 12, 4490–4495 (2004).
[CrossRef]

2003 (1)

2001 (1)

2000 (1)

Anuszkiewicz, A.

Arriaga, J.

Bang, O.

Baptista, J. M.

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
[CrossRef]

Berghmans, F.

Birks, T. A.

Chen, D. R.

Chena, L. X.

D. R. Chen, G. F. Hu, and L. X. Chena, “Pressure/temperature sensor based on a dual-core photonic crystal fiber,” SPIE-OSA-IEEE. 8307, 83071N (2011).
[CrossRef]

Choi, H. Y.

Chu, J. L.

Chung, Y. J.

H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
[CrossRef]

Couny, F.

Dong, B.

Dong, X. Y.

Dufva, M.

Eggleton, B. J.

Farr, L.

Feng, Z. Y.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Frazão, O.

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
[CrossRef]

Fu, H. Y.

Fujita, M.

Fukai, C.

Geernaert, T.

Gong, H. P.

Guo, T.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Høiby, P. E.

Hu, G. F.

D. R. Chen, G. F. Hu, and L. X. Chena, “Pressure/temperature sensor based on a dual-core photonic crystal fiber,” SPIE-OSA-IEEE. 8307, 83071N (2011).
[CrossRef]

Hu, M. L.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Huang, X.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Jensen, J. B.

Jin, Y. X.

Kakarantzas, G.

Kang, J. U.

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Mater. Express 12, 4490–4495 (2004).
[CrossRef]

Kawanishi, S.

Khijwania, S. K.

Kim, B. K.

H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
[CrossRef]

Kim, D. H.

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Mater. Express 12, 4490–4495 (2004).
[CrossRef]

Kim, H.-M.

H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
[CrossRef]

Kim, M. J.

Kim, T.-H.

H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
[CrossRef]

Klimek, J.

Knight, J. C.

Kubota, H.

Kuhlmey, B. T.

Lee, B. H.

Liu, Z. Y.

Lu, C.

Makara, M.

Mangan, B. J.

Martynkien, T.

Matsui, T.

Meng, H.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Mergo, P.

Nakajima, K.

Nasilowski, T.

Olszewski, J.

Ortigosa-Blanch, A.

Pedersen, L. H.

Poturaj, K.

Qiao, X. G.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Rindorf, L.

Russell, P. St. J.

Santos, J. L.

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
[CrossRef]

Shao, L. Y.

Shen, C. Y.

Shen, W.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Skorupski, K.

Sonnenfeld, C.

Statkiewicz Barabach, G.

Su, D.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Sun, H.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Suzuki, K.

Szczurowski, M. K.

Tam, H. Y.

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47, 2835–2839 (2008).
[CrossRef]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tam, Hwa-Yaw

Tan, C.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Tanaka, M.

Tarnowski, K.

Thienpont, H.

Urbanczyk, W.

Vincent Tse, M. Leung

Wadsworth, W. J.

Wai, P. K. A.

Wang, J. F.

Wang, R. H.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Wang, W.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Wei, L.

Wojcik, J.

Wu, C.

Wu, D. K. C.

Wu, X.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

You, Y.

Zhang, G.

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

Zhang, J.

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

Zhong, C.

Zhou, D. P.

Zou, X.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H.-M. Kim, T.-H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22, 1539–1541 (2010).
[CrossRef]

IEEE Sens. J. (2)

O. Frazão, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi–Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7, 1453–1455 (2007).
[CrossRef]

J. Zhang, H. Sun, R. H. Wang, D. Su, T. Guo, Z. Y. Feng, M. L. Hu, and X. G. Qiao, “Simultaneous measurement of refractive index and temperature using a Michelson fiber interferometer with a Hi-Bi Fiber Probe,” IEEE Sens. J. 13, 2061–2065 (2013).

J. Lightwave Technol. (2)

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. Express (1)

D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Mater. Express 12, 4490–4495 (2004).
[CrossRef]

Sens. Actuators B (1)

H. Meng, W. Shen, G. Zhang, X. Wu, W. Wang, C. Tan, and X. Huang, “Michelson interferometer-based fiber-optic sensing of liquid refractive index,” Sens. Actuators B 160, 720–723 (2011).
[CrossRef]

SPIE-OSA-IEEE. (1)

D. R. Chen, G. F. Hu, and L. X. Chena, “Pressure/temperature sensor based on a dual-core photonic crystal fiber,” SPIE-OSA-IEEE. 8307, 83071N (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Initial interference spectrum of the proposed interferometer.

Fig. 3.
Fig. 3.

Spatial spectrum of IFQMI configuration with L=20cm.

Fig. 4.
Fig. 4.

Interference spectrum response to strain.

Fig. 5.
Fig. 5.

Wavelength shift of the dip near 1565.28 nm versus the applied strain.

Fig. 6.
Fig. 6.

Interference spectrum response to torsion.

Fig. 7.
Fig. 7.

Wavelength shift of the dip near 1564.8 nm versus the applied torsion.

Fig. 8.
Fig. 8.

Experimental setup of the IFQMI with 10 cm long PM-PCF as sensing head for temperature measurement.

Fig. 9.
Fig. 9.

Interference spectrum response to temperature.

Fig. 10.
Fig. 10.

Wavelength shift of the dip near 1577.4 nm versus the applied temperature.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[[E1out][E2out]]=[C1][eiΦ[HiBi]00[I]][[M]00[M]][eiΦ[HiBi]00[I]][C1][[E1in]0],
[C1]=12[[I]i[I]i[I][I]][HiBi]=[eiΔφ001][M]=[r00r],
T=|E1out|2|E1in|2=14[(ei(2Φ+2Δφ)1)E1inx(ei(2Φ)1)E1iny][(ei(2Φ+2Δφ)1)E1inx*(ei(2Φ)1)E1iny*]=14(ei(2Φ+2Δφ)1)(ei(2Φ+2Δφ)1)|E1inx|2+14(ei(2Φ)1)(ei(2Φ)1)|E1iny|2.
T=12+14[cos(2Δφ+2Φ)+cos(2Φ)].
4πΔneffmλ=(2m+1)π,
Δλλ2ΔneffmL.
δλ[(1+pe)ε+(α+ξ)ΔT]λm,
δλΔnθΔθ,

Metrics