Abstract

Normalized space-dependent rate equations of passively Q-switched intracavity frequency-doubled Raman lasers are deduced for the first time. The normalized rate equations are solved numerically to investigate the influences of the normalized variables on the yellow laser performance. The LD end-pumped passively Q-switched Nd:YAG/SrWO4/KTP/Cr:YAG yellow Raman laser is realized, and the maximum yellow laser output power is 350 mW with the incident pump power of 5.9 W with Cr:YAG of 85% initial transmission. The theoretical analysis and optimization are taken out for the experiment, and the theoretical results are in accordance with the experimental ones.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
    [CrossRef]
  2. H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2 W average power,” Opt. Lett. 24, 1490–1492 (1999).
    [CrossRef]
  3. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, Y. Huang, and N. Ye, “Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite,” Opt. Lett. 34, 2763–2765 (2009).
    [CrossRef]
  4. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, H. Shen, Y. Zheng, L. Huang, and Z. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express 17, 21544–21550 (2009).
    [CrossRef]
  5. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
    [CrossRef]
  6. Y. F. Chen, K. W. Su, H. J. Zhang, J. Y. Wang, and M. H. Jiang, “Efficient diode-pumped actively Q-switched Nd:YAG/BaWO4 intracavity Raman laser,” Opt. Lett. 30, 3335–3337 (2005).
    [CrossRef]
  7. S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
    [CrossRef]
  8. P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32, 1114–1116 (2007).
    [CrossRef]
  9. J. Lee, H. M. Pask, J. A. Piper, H. J. Zhang, and J. Y. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multiwatt continuous-wave, yellow emission,” Opt. Express 18, 5984–5992 (2010).
    [CrossRef]
  10. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).
    [CrossRef]
  11. T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009).
    [CrossRef]
  12. H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
    [CrossRef]
  13. J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
    [CrossRef]
  14. T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
    [CrossRef]
  15. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 756–763 (2007).
    [CrossRef]
  16. S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
    [CrossRef]
  17. S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
    [CrossRef]
  18. S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
    [CrossRef]
  19. G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
    [CrossRef]
  20. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
    [CrossRef]
  21. X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-swiched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
    [CrossRef]
  22. J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
    [CrossRef]
  23. H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
    [CrossRef]

2012 (1)

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

2011 (2)

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser,” Opt. Lett. 36, 1428–1430 (2011).
[CrossRef]

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

2010 (1)

2009 (4)

2007 (4)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 756–763 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32, 1114–1116 (2007).
[CrossRef]

2006 (1)

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

2005 (1)

2004 (3)

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

2003 (1)

J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
[CrossRef]

2000 (1)

1999 (2)

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2 W average power,” Opt. Lett. 24, 1490–1492 (1999).
[CrossRef]

1994 (1)

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

1989 (1)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Chang, J.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Chen, W.

Chen, X.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

Chen, Y. F.

Chen, Z.

Cong, Z.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

Degnan, J. J.

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

Dekker, P.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 756–763 (2007).
[CrossRef]

P. Dekker, H. M. Pask, and J. A. Piper, “All-solid-state 704 mW continuous-wave yellow source based on an intracavity, frequency-doubled crystalline Raman laser,” Opt. Lett. 32, 1114–1116 (2007).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

Ding, S.

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Duan, Y.

Eilers, H.

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

Fan, S.

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

He, J.

J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
[CrossRef]

Hommerich, U.

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

Huang, C.

Huang, L.

Huang, Y.

Huo, Y.

Jacobsen, S. M.

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

Jia, P.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Jiang, M. H.

Lee, A.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009).
[CrossRef]

Lee, A. J.

Lee, J.

Li, G.

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Li, L.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Li, S.

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Li, X.

Liu, J.

J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
[CrossRef]

Liu, Y.

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

Liu, Z.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Ojima, Y.

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Omatsu, T.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

Ozygus, B.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-swiched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Pask, H.

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

Pask, H. M.

Piper, J.

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009).
[CrossRef]

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

Piper, J. A.

Qing, X.

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

Shen, H.

Simons, J.

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

Spence, D. J.

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 756–763 (2007).
[CrossRef]

Su, F.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Su, K. W.

Tao, X.

Wang, J. Y.

Wang, P.

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

Wang, Q.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Wang, Q. P.

Wang, S.

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

Wang, W.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Wang, Z. C.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Weber, H.

X. Y. Zhang, S. Z. Zhao, Q. P. Wang, B. Ozygus, and H. Weber, “Modeling of passively Q-swiched lasers,” J. Opt. Soc. Am. B 17, 1166–1175 (2000).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Wei, Y.

Xu, H.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Yang, J.

J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
[CrossRef]

Yang, K.

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Ye, N.

Yen, W. M.

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

Zhang, G.

Zhang, H.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

Zhang, H. J.

Zhang, J.

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

Zhang, S.

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

Zhang, X.

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, and X. Tao, “Efficient diode-end-pumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser,” Opt. Lett. 34, 2610–2612 (2009).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Zhang, X. Y.

Zhao, H.

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Zhao, S.

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

Zhao, S. Z.

Zheng, Y.

Zhu, H.

Appl. Phys. B (2)

T. Omatsu, A. Lee, H. M. Pask, and J. Piper, “Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal,” Appl. Phys. B 97, 799–804 (2009).
[CrossRef]

S. Ding, P. Wang, X. Qing, J. Zhang, S. Wang, and X. Zhang, “Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers,” Appl. Phys. B 104, 819–827 (2011).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, S. Wang, and Y. Liu, “Modeling of actively Q-switched intracavity Raman lasers,” IEEE J. Quantum Electron. 43, 722–729 (2007).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, “Modeling of diode-pumped actively Q-switched lasers,” IEEE J. Quantum Electron. 35, 1912–1918 (1999).
[CrossRef]

S. Ding, X. Zhang, Q. Wang, F. Su, P. Jia, S. Li, S. Fan, J. Chang, S. Zhang, and Z. Liu, “Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal,” IEEE J. Quantum Electron. 42, 927–933 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 756–763 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. Ding, X. Zhang, Q. Wang, J. Zhang, S. Wang, Y. Liu, and X. Zhang, “Numerically modeling of passively Q-switched intracavity Raman lasers,” J. Phys. D 40, 2736–2747 (2007).
[CrossRef]

Opt. Commun. (5)

H. Xu, X. Zhang, Q. Wang, Z. C. Wang, W. Wang, L. Li, Z. Liu, Z. Cong, X. Chen, and H. Zhang, “Diode-pumped passively Q-switched yellow laser with SrWO4 Raman crystal and ceramic Nd:YAG gain medium,” Opt. Commun. 285, 5302–5305 (2012).
[CrossRef]

J. Simons, H. Pask, P. Dekker, and J. Piper, “Small-scale all-solid-state, frequency-doubled intracavity Raman laser producing 5 mW yellow–orange output at 598 nm,” Opt. Commun. 229, 305–310 (2004).
[CrossRef]

T. Omatsu, Y. Ojima, H. M. Pask, J. A. Piper, and P. Dekker, “Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Commun. 232, 327–331 (2004).
[CrossRef]

J. Liu, J. Yang, and J. He, “Diode-pumped passively Q-switched c-cut Nd:GdVO4 laser,” Opt. Commun. 219, 317–321 (2003).
[CrossRef]

G. Li, S. Zhao, H. Zhao, K. Yang, and S. Ding, “Rate equations and solutions of a laser-diode end-pumped passively Q-switched intracavity doubling laser taking into account intracavity laser spatial distribution,” Opt. Commun. 234, 321–328 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. B (1)

H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev. B 49, 15505–15513 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Dependences of Φ2ωinteg [solid lines in (A)], Φ2ωmax [dashed lines in (A)] and Δτ (B) on M for different values of N with H=10 and α=20. N is equal to 5, 4.5, 4, 3.5, 3, 2.5, and 2 from the top down in (A), and from the bottom up in (B), respectively.

Fig. 2.
Fig. 2.

Temporal profiles of ΦL (A), ΦS (B), and HΦS2 (C) with H=10, M=30, N=5, K=0.1, and α=20.

Fig. 3.
Fig. 3.

Dependences of Φ2ωinteg [solid lines in (A)], Φ2ωmax [dashed lines in (A)], and Δτ (B) on H for different values of N with M=15 and α=20. N is equal to 5, 4.5, 4, 3.5, 3, 2.5, and 2 from the top down in (A), and from the bottom up in (B), respectively.

Fig. 4.
Fig. 4.

Dependences of Φ2ωinteg [solid lines in (A)], Φ2ωmax [dashed lines in (A)], and Δτ (B) on N for different values of α with H=10 and M=15. α is equal to 70, 50, 30, 20, 15, and 10 from the top down in (A), and from the bottom up in (B), respectively.

Fig. 5.
Fig. 5.

Experimental setup of the diode-pumped passively Q-switched Nd:YAG/SrWO4/KTP/Cr:YAG yellow Raman laser.

Fig. 6.
Fig. 6.

Average output power and pulse energy at 590 nm with respect to the incident pump power.

Fig. 7.
Fig. 7.

Pulse width and PRF at 590 nm with respect to the incident pump power.

Fig. 8.
Fig. 8.

Dependences of Φ2ωinteg, Φ2ωmax, and Δτ on H with M=12, N=3, K=0.3, and α=60.

Fig. 9.
Fig. 9.

Dependences of Φ2ωinteg on M with N=3, K=0.3, and α=60, and H is equal to 10 and 2 from the top down, respectively.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

φLL(r,t)=φLL(0,t)exp(2r2wLL2),
φLR(r,t)=φLR(0,t)exp(2r2wLR2),
φLA(r,t)=φLA(0,t)exp(2r2wLA2),
φSR(r,t)=φSR(0,t)exp(2r2wSR2),
φSD(r,t)=φSD(0,t)exp(2r2wSD2),
wLL2φLL(0,t)=wLR2φLR(0,t)=wLA2φLA(0,t),
wSR2φSR(0,t)=wSD2φSD(0,t).
n(r,0)=n(0,0)exp(2r2wp2),
τ=ttr[ln(1/RL)+ln(1/T02)+LL],
ΦL(0,τ)=φLL(0,τ)2γLσlcln(1/RL)+ln(1/T02)+LL,
ΦS(0,τ)=φSR(0,τ)2γLσlcln(1/RL)+ln(1/T02)+LL,
N=ln(1/RL)+ln(1/T02)+LLln(1/RL)+σesaσgsaln(1/T02)+LL,
KSP=kspkls2trln(1/RL)+ln(1/T02)+LL,
H=δk4γLσlc,
M=11+krs2·ghνsclsγLσlc,
K=ln(1/RS)+LSln(1/RL)+ln(1/T02)+LL,
δk=hωs3deff2lK22c2ε0ne22ωne2ωne1ω,
dΦL(0,τ)dτ=ΦL(0,τ)01exp[A(τ)yβ]dy(11N)ΦL(0,τ)1exp[αA(τ)]αA(τ)MΦL(0,τ)Φs(0,τ)ΦL(0,τ)N,
dΦS(0,τ)dτ=Mkls2ΦL(0,τ)ΦS(0,τ)KΦS(0,τ)HΦS2(0,τ)+KSPΦL(0,τ),
A(τ)=0τΦL(0,τ)dτ,α=γAwLL2σgsaγLwLA2σ,
P2ωmax=πwSR2hν2ω8trγLσ×[ln(1/RL)+ln(1/T02)+LL]2HΦSmax2,
E2ω=πwSR2hν2ω8γLσ×[ln(1/RL)+ln(1/T02)+LL]HΦS2(0,τ)dτ,

Metrics