Abstract

A method for synthesizing a 360° computer-generated spherical hologram of real-existing objects is proposed. The whole three-dimensional (3-D) information of a real object is extracted by using a depth camera to capture multiple sides of the object. The point cloud sets which are obtained from corresponding sides of the object surface are brought into a common coordinate system by point cloud registration process. The modeled 3-D point cloud is then processed by hidden point removal method in order to identify visible point set for each spherical hologram point. The hologram on the spherical surface is finally synthesized by accumulating spherical waves from visible object points. By reconstructing partial region of the calculated spherical hologram, the corresponding view of the 3-D real object is obtained. The principle is verified via optical capturing using a depth camera and numerical reconstructions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. D. D. Soares and J. C. A. Fernandes, “Cylindrical hologram of 360° field of view,” Appl. Opt. 21, 3194–3196 (1982).
    [CrossRef]
  2. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [CrossRef]
  3. J. P. Waters, “Holographic image synthesis utilizing theoretical method,” Appl. Phys. Lett. 9, 405–407 (1966).
    [CrossRef]
  4. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
    [CrossRef]
  5. K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).
  6. J. Rosen, “Computer-generated holograms of images reconstructed on curved surfaces,” Appl. Opt. 38, 6136–6140 (1999).
    [CrossRef]
  7. Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt. Express 13, 1418–1423 (2005).
    [CrossRef]
  8. M. Tachiki, Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for spherical computer-generated holograms,” Appl. Opt. 45, 3527–3533 (2006).
    [CrossRef]
  9. T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
    [CrossRef]
  10. B. J. Jackin and T. Yatagai, “Fast calculation of spherical computer generated hologram using spherical wave spectrum method,” Opt. Express 21, 935–948 (2013).
    [CrossRef]
  11. K. Hosoyachi, K. Yamaguchi, T. Ichikawa, and Y. Sakamoto, “Precalculation method using spherical basic object light for computer-generated hologram,” Appl. Opt. 52, A33–A44 (2013).
    [CrossRef]
  12. J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
    [CrossRef]
  13. G. Li, K.-C. Kwon, G.-H. Shin, J.-S. Jeong, K.-H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using a depth camera,” J. Opt. Soc. Korea 16, 381–385 (2012).
    [CrossRef]
  14. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 22–89, Chap. 2–4.
  16. N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.
  17. S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
    [CrossRef]
  18. E. Sahin and L. Onural, “Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition,” J. Opt. Soc. Am. A 29, 1459–1469 (2012).
    [CrossRef]

2013 (2)

2012 (3)

2011 (1)

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
[CrossRef]

2006 (1)

2005 (1)

1999 (1)

1982 (1)

1967 (1)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical method,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Baasantseren, G.

Barabas, J.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

Basri, R.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
[CrossRef]

Bove, V. M.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

Fernandes, J. C. A.

Fujii, T.

Gelfand, N.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 22–89, Chap. 2–4.

Guibas, L.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.

Hosoyachi, K.

Ichikawa, T.

Itoh, M.

Jackin, B. J.

Jeong, J.-S.

Jolly, S.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

Kanaya, I.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).

Katz, S.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
[CrossRef]

Kim, M.-S.

Kim, N.

Kwon, K.-C.

Li, G.

Liu, L.

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

Lohmann, A. W.

Matsusima, K.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).

Mitra, N. J.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.

Nakahara, S.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).

Nakamura, M.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).

Onural, L.

Pan, Z.

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

Paris, D. P.

Park, J.-H.

Pottmann, H.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.

Rosen, J.

Sahin, E.

Sakamoto, Y.

Sando, Y.

Shin, G.-H.

Smalley, D. E.

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

Soares, O. D. D.

Tachiki, M.

Tal, A.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
[CrossRef]

Tong, J.

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical method,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

Yamaguchi, K.

Yamaguchi, T.

Yan, H.

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

Yatagai, T.

Yoo, K.-H.

Yoshikawa, H.

Zhou, J.

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

ACM Trans. Graph. (1)

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26, 2–11 (2007).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical method,” Appl. Phys. Lett. 9, 405–407 (1966).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3-D full human bodies using kinects,” IEEE Trans. Vis. Comput. Graph. 18, 643–650 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Opt. Express (3)

Proc. SPIE (1)

J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove, “Diffraction specific coherent panoramagrams of real scenes,” Proc. SPIE 7957, 1–7 (2011).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 22–89, Chap. 2–4.

N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data from a geometric optimization perspective,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, R. Scopigno and D. Zorin, eds. (ACM, 2004), pp. 22–31.

K. Matsusima, M. Nakamura, I. Kanaya, and S. Nakahara, “Computational holography: real 3-D by fast wave-field rendering in ultra-high resolution,” in Proceedings of SIGGRAPH Posters 2010 (ACM, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

(a) Position of the object point and the hologram surface. (b) Amplitude and (c) phase distribution of the spherical hologram.

Fig. 2.
Fig. 2.

Spherical and planar hologram for optical field of the same field of view.

Fig. 3.
Fig. 3.

Required number of samples for the spherical and the planar hologram. d=18cm, r=1m.

Fig. 4.
Fig. 4.

Extracted depth maps of the object in multiple directions. (a) Color images of the object. (b) Corresponding depth map images.

Fig. 5.
Fig. 5.

Rotation of the initial point cloud sets. (a) Initial point clouds (b) Rotated point clouds.

Fig. 6.
Fig. 6.

Acquired 3-D model of the real object.

Fig. 7.
Fig. 7.

Spherical flipping of the 3-D point cloud by Eq. (8). The object point cloud P^T and the flipped point cloud P^f. a, b, and c are points in P^T, and the corresponding flipped points in P^f are denoted as a, b, and c.

Fig. 8.
Fig. 8.

(a) Entire points without HPR and (b) visible point set processed by HPR at the hologram point Hr(90°,90°).

Fig. 9.
Fig. 9.

Visible point set for each hologram point.

Fig. 10.
Fig. 10.

Procedure of the proposed CGSH synthesis.

Fig. 11.
Fig. 11.

Spherical hologram generated by one point object. (a) Amplitude and (b) phase images. (1) Object point is located at (xi,yi,zi)=(0,0,1×102cm); (2) (xi,yi,zi)=(0,1×102cm,0); (3) (xi,yi,zi)=(1×102cm,0,0); and (4) (xi,yi,zi)=(0.577×102cm,0.577×102cm,0.577×102cm).

Fig. 12.
Fig. 12.

Experimental setup for capturing depth maps.

Fig. 13.
Fig. 13.

Amplitude of the generated spherical hologram.

Fig. 14.
Fig. 14.

Reconstruction process of the selected region.

Fig. 15.
Fig. 15.

Reconstruction of the partial regions of the spherical hologram. (a) Amplitude, (b) phase, and (c) reconstruction image of the selected hologram region.

Fig. 16.
Fig. 16.

(a) Reconstruction image from a partial region of the proposed spherical hologram. (b) Reconstruction image from the spherical hologram generated without using the HPR technique.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

hr(θ,φ)=Aiejkdidi=Aiexp{jk[(rsinθcosφxi)2+(rsinθsinφyi)2+(rcosθzi)2]1/2}[(rsinθcosφxi)2+(rsinθsinφyi)2+(rcosθzi)2]1/2,
|fLθ|max=|12πθ(kdi)|max=kri2π|fLφ|max=|12πφ(kdi)|max=kri2π,
Nθ=2π|fLθ|max=kriNφ=4π|fLφ|max=2kri.
P^T=RP^o+T,
R=[1000cosγxsinγx0sinγxcosγx][cosγy0sinγy010sinγy0cosγy][cosγzsinγz0sinγzcosγz0001],
T1=[0,0,0]T2=[m1xm2x,m1ym2y,m1zm2z]T3=[m1xm3x,m1ym3y,m1zm3z]T4=[m1xm4x,m1ym4y,m1zm4z],
P^T=P^1R(P^2R+T2)(P^3R+T3)(P^4R+T4),
P^f=P^T+2(rfP^T)P^TP^T,
Hr(θ,φ)=i=1MAiexp{jk[(rsinθcosφxi)2+(rsinθsinφyi)2+(rcosθzi)2]1/2}[(rsinθcosφxi)2+(rsinθsinφyi)2+(rcosθzi)2]1/2,
U(ε,η)=u=1sv=1wHr(θ,φ)exp(jkdu,v)du,v,

Metrics