Abstract

The ultra-long optical fiber of an optoelectronic oscillator (OEO) and the high spectral purity of its high frequency oscillation signal open the possibility of high-accuracy distance measurements at a long range. However, the longer the fiber length in an OEO, the more prone the system is to surrounding disturbance, which in turn leads to fluctuation of the loop delay and a reduction in distance measurement accuracy. In this paper, an intensity modulated light signal is combined with the light signal of an OEO in terms of wavelength division multiplexing (WDM) and is propagated through the fiber. The phase shift has been measured in real time to compensate for variations in fiber delay. With this method, experimental results showed a standard deviation of 14.8 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wallerand, “Towards new absolute long-distance measurement in air,” presented at NCSL International Workshop and Symposium, Orlando, Florida, USA, 2008.
  2. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [CrossRef]
  3. P. de Groot and J. McGarvey, “Chirped synthetic-wavelength interferometry,” Opt. Lett. 17, 1626–1628 (1992).
    [CrossRef]
  4. T. Kubota, M. Nara, and T. Yoshino, “Interferometer for measuring displacement and distance,” Opt. Lett. 12, 310–312 (1987).
    [CrossRef]
  5. Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24, 804–807 (1985).
    [CrossRef]
  6. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
    [CrossRef]
  7. K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
    [CrossRef]
  8. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
    [CrossRef]
  9. S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” J. Opt. A 4, S356 (2002).
    [CrossRef]
  10. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240 m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
    [CrossRef]
  11. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [CrossRef]
  12. A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
    [CrossRef]
  13. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19, 6549–6562 (2011).
    [CrossRef]
  14. R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
    [CrossRef]
  15. D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.
  16. D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.
  17. A. S. Daryoush, “Thermal sensitivity of photonic crystal fibers in opto-electronic oscillators,” The Journal of China Universities of Posts and Telecommunications 16, 1–6 (2009).
    [CrossRef]
  18. I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Perot etalon,” J. Lightwave Technol. 28, 3100–3106 (2010).
  19. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
    [CrossRef]
  20. D. A. Howe and A. Hati, “Low-noise x-band oscillator and amplifier technologies: comparison and status,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed. (IEEE, 2005), pp. 481–487.
  21. X. Yao and L. Maleki, “Light induced microwave oscillator,” TDA Progress Report, 42-123, 47–68 (1995).
  22. D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
    [CrossRef]
  23. M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
    [CrossRef]
  24. W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552–1555 (1986).
    [CrossRef]
  25. M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
    [CrossRef]

2012 (1)

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

2011 (1)

2010 (2)

I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Perot etalon,” J. Lightwave Technol. 28, 3100–3106 (2010).

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

2009 (2)

A. S. Daryoush, “Thermal sensitivity of photonic crystal fibers in opto-electronic oscillators,” The Journal of China Universities of Posts and Telecommunications 16, 1–6 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

2006 (1)

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

2003 (1)

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

2002 (2)

S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” J. Opt. A 4, S356 (2002).
[CrossRef]

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

2000 (1)

1998 (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
[CrossRef]

1996 (1)

1994 (1)

1992 (1)

1987 (1)

1986 (2)

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552–1555 (1986).
[CrossRef]

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[CrossRef]

1985 (1)

Ahmed, A.-Z.

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Bhattacharya, N.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Bouwmans, G.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Brimacombe, B.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Chazelas, J.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Cheng, Y.-Y.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

Cui, M.

Daryoush, A. S.

A. S. Daryoush, “Thermal sensitivity of photonic crystal fibers in opto-electronic oscillators,” The Journal of China Universities of Posts and Telecommunications 16, 1–6 (2009).
[CrossRef]

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

de Groot, P.

de Marchi, A.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Deborgies, F.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Decoster, D.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Delfyett, P. J.

Eliyahu, D.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.

Florian, P.

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

Fujima, I.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
[CrossRef]

Haight, W. C.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[CrossRef]

Hamp, M. J.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Hati, A.

D. A. Howe and A. Hati, “Low-noise x-band oscillator and amplifier technologies: comparison and status,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed. (IEEE, 2005), pp. 481–487.

Hatton, W.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552–1555 (1986).
[CrossRef]

Hocken, R. J.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[CrossRef]

Hoghooghi, N.

Howe, D. A.

D. A. Howe and A. Hati, “Low-noise x-band oscillator and amplifier technologies: comparison and status,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed. (IEEE, 2005), pp. 481–487.

Hubbard, M.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Iwasaki, S.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
[CrossRef]

Journet, B.

S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” J. Opt. A 4, S356 (2002).
[CrossRef]

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Kaba, M.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Kamran, A.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.

Karl, M.-H.

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

Kubota, T.

Lau, K.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[CrossRef]

Ledoux-Rak, I.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Li, H. W.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Luong vu Hai, N.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Maleki, L.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[CrossRef]

X. Yao and L. Maleki, “Light induced microwave oscillator,” TDA Progress Report, 42-123, 47–68 (1995).

Mandridis, D.

Martin, W.

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

Matsumoto, H.

McGarvey, J.

Minoshima, K.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Nara, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

Nguyen Lam, D.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Nicolae, R. D.

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

Nishimura, M.

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552–1555 (1986).
[CrossRef]

Norgia, M.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Ozdur, I.

Pesatori, A.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Poujouly, S.

S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” J. Opt. A 4, S356 (2002).
[CrossRef]

Quiquempois, Y.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Sariri, K.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.

Schwider, J.

Seta, K.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
[CrossRef]

Stupka, M.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Svelto, C.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

Taylor, J.

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

Tokhmakhian, M.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.

Urbach, H. P.

van den Berg, S. A.

Vilcot, J. P.

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

vu Van, L.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Wallerand, J.

J. Wallerand, “Towards new absolute long-distance measurement in air,” presented at NCSL International Workshop and Symposium, Orlando, Florida, USA, 2008.

Wright, J.

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

Wyant, J. C.

Yao, X.

X. Yao and L. Maleki, “Light induced microwave oscillator,” TDA Progress Report, 42-123, 47–68 (1995).

Yao, X. S.

Yoshino, T.

Zeitouny, M. G.

Zhou, L.

Zucco, M.

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

Zyss, J.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

Appl. Opt. (2)

IEEE Microw. Mag. (1)

M. Kaba, H. W. Li, A. S. Daryoush, J. P. Vilcot, D. Decoster, J. Chazelas, G. Bouwmans, Y. Quiquempois, and F. Deborgies, “Improving thermal stability of opto-electronic oscillators,” IEEE Microw. Mag. 7, 38–47 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Hamp, J. Wright, M. Hubbard, and B. Brimacombe, “Investigation into the temperature dependence of chromatic dispersion in optical fiber,” IEEE Photon. Technol. Lett. 14, 1524–1526 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Pesatori, M. Norgia, C. Svelto, M. Zucco, M. Stupka, and A. de Marchi, “High-resolution mode-locked laser range finder with harmonic down conversion,” IEEE Trans. Instrum. Meas. 61, 1536–1542 (2012).
[CrossRef]

J. Lightwave Technol. (2)

W. Hatton and M. Nishimura, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552–1555 (1986).
[CrossRef]

I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Perot etalon,” J. Lightwave Technol. 28, 3100–3106 (2010).

J. Opt. A (1)

S. Poujouly and B. Journet, “A twofold modulation frequency laser range finder,” J. Opt. A 4, S356 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

R. D. Nicolae, M.-H. Karl, W. Martin, P. Florian, and A.-Z. Ahmed, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21, 115302 (2010).
[CrossRef]

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9, 1049 (1998).
[CrossRef]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[CrossRef]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Precis. Eng. (1)

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[CrossRef]

Proc. SPIE (1)

D. Eliyahu, K. Sariri, J. Taylor, and L. Maleki, “Optoelectronic oscillator with improved phase noise and frequency stability,” Proc. SPIE 4998B, 139–147 (2003).
[CrossRef]

The Journal of China Universities of Posts and Telecommunications (1)

A. S. Daryoush, “Thermal sensitivity of photonic crystal fibers in opto-electronic oscillators,” The Journal of China Universities of Posts and Telecommunications 16, 1–6 (2009).
[CrossRef]

Other (5)

D. A. Howe and A. Hati, “Low-noise x-band oscillator and amplifier technologies: comparison and status,” in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, L. Breakiron, ed. (IEEE, 2005), pp. 481–487.

X. Yao and L. Maleki, “Light induced microwave oscillator,” TDA Progress Report, 42-123, 47–68 (1995).

J. Wallerand, “Towards new absolute long-distance measurement in air,” presented at NCSL International Workshop and Symposium, Orlando, Florida, USA, 2008.

D. Nguyen Lam, B. Journet, I. Ledoux-Rak, J. Zyss, N. Luong vu Hai, and L. vu Van, “Opto-electronic oscillator: Applications to sensors,” in Proceedings of IEEE International Meeting on Microwave Photonics/2008 Asia-Pacific Microwave Photonics Conference (IEEE, 2008), pp. 131–134.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (IEEE, 2002) pp. 580–583.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structure of an OEO.

Fig. 2.
Fig. 2.

Oscillation frequency variation without temperature control.

Fig. 3.
Fig. 3.

Scheme of distance measurement with compensation loop. PD: photodetector, MUX: multiplexer, DeMUX: demultiplexer, VNA: vector network analyzer. Light of λ1 and λ2 is used for distance measurement loop and compensation loop, respectively.

Fig. 4.
Fig. 4.

Accumulative residual errors before and after compensation.

Fig. 5.
Fig. 5.

Residual errors of the compensated results compare to the ODL.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f=Nτ,
Δf=ff=N(1τ+Δτ1τ),
Ls=Δtcn=[N(1f1f)Δφ2πfmod]cn,
1fm×1360009.26×1015s=9.26fs.
N=foscfFSR.

Metrics