Abstract

In this article, we present a simple method to realize a sensor of ultrahigh sensitivity and compact size by employing a feedback double ring resonator. We demonstrate that this method has not only a higher sensitivity than an optimal add–drop resonator (ADR), but also a relatively high performance when the Q factor drops. Furthermore, we show that this sensing system can overcome the limitation of Q factor on system sensitivity by 2 orders of magnitude in comparison to the corresponding ADR. Thus, the proposal in this paper provides a promising and feasible scheme to realize a highly effective sensor that is weakly dependent on the Q factor of the system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
    [CrossRef]
  2. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
    [CrossRef]
  3. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  4. S. Pevec and D. Donlagic, “Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51, 4536–4541 (2012).
    [CrossRef]
  5. P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48, 6044–6049 (2009).
    [CrossRef]
  6. Q. Wu, Y. Semenova, B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode-multimode-single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011).
    [CrossRef]
  7. M. Terrel, M. J. F. Digonnet, and S. H. Fan, “Ring-coupled Mach–Zehnder interferometer optimized for sensing,” Appl. Opt. 48, 4874–4879 (2009).
    [CrossRef]
  8. M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
    [CrossRef]
  9. Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35, 691–693 (2010).
    [CrossRef]
  10. S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
    [CrossRef]
  11. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
    [CrossRef]
  12. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [CrossRef]
  13. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  14. Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
    [CrossRef]
  15. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [CrossRef]
  16. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32, 2577–2579 (2007).
    [CrossRef]
  17. C. J. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35, 1629–1631 (2010).
    [CrossRef]
  18. C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  19. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
    [CrossRef]

2012 (1)

2011 (1)

2010 (3)

2009 (4)

C. J. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
[CrossRef]

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

P. Wang, Y. Semenova, Q. Wu, G. Farrell, Y. Ti, and J. Zheng, “Macrobending single-mode fiber-based refractometer,” Appl. Opt. 48, 6044–6049 (2009).
[CrossRef]

M. Terrel, M. J. F. Digonnet, and S. H. Fan, “Ring-coupled Mach–Zehnder interferometer optimized for sensing,” Appl. Opt. 48, 4874–4879 (2009).
[CrossRef]

2008 (2)

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
[CrossRef]

2007 (3)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett. 32, 2577–2579 (2007).
[CrossRef]

2006 (2)

2004 (1)

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

2003 (2)

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[CrossRef]

Arnold, S.

Baets, R.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

Boyd, R. W.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

Chao, C. Y.

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chen, Y.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
[CrossRef]

Chin, M. K.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Darmawan, S.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Digonnet, M. J. F.

Donlagic, D.

Dumon, P.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

Fan, S. H.

Farrell, G.

Gondarenko, A.

Gopal, V.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Guha, B.

Guo, L. J.

Heebner, J. E.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

Herath, C.

Holler, S.

Jackson, D. J.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

Khoshsima, M.

Landobasa, Y. M.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Lipson, M.

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Ma, Y.

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Messall, M.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Pati, G. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Pevec, S.

Salit, K.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Schweinsberg, A.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

Semenova, Y.

Shahriar, M. S.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Sumetsky, M.

Teraoka, I.

Terrel, M.

Ti, Y.

Tian, H.

Tripathi, R.

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Vollmer, F.

Wang, C. J.

C. J. Wang and C. Herath, “High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber,” Opt. Lett. 35, 1629–1631 (2010).
[CrossRef]

C. J. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
[CrossRef]

Wang, N.

Wang, P.

Wong, V.

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

Wu, H.

Wu, Q.

Xia, Z. X.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
[CrossRef]

Yan, B.

Yu, C.

Yuan, P.

Zhang, J.

Zhang, X. N.

Zhang, Y. D.

Zheng, J.

Zhou, Z. P.

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE J. Quantum Electron. 44, 100–107 (2008).
[CrossRef]

J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40, 726–730 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (1)

M. S. Shahriar, G. S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, “Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light,” Phys. Rev. A 75, 053807 (2007).
[CrossRef]

Sensors (1)

C. J. Wang, “Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives,” Sensors 9, 7595–7621 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the (a) ADR and (b) FBDR configuration-based sensor.

Fig. 2.
Fig. 2.

Transmission spectra versus Δϕ of (a), (b) ADR and (c), (d) FBDR. In (a), α=0.9 and t=0.9.Δϕ is ranging from π/2 to π/2, in which Δϕ=(ββ0)·πR, and β0 is the intrinsic phase transmission coefficient of the resonator, which means β0·πR=nω0/c·πR=π, ω0 is the intrinsic angular frequency of the resonator. Transmission spectra in (b) is more general case when t is ranging from 0 to 1. In (c), α=0.9 and t=0.9, the phase detuning Δϕ=(ββ0)·πR is ranging from π/2 to π/2 and ΔβL=(ββ0)·L=π/2. And in (d), Δϕ and ΔβL are both ranging from π/2 to π/2.

Fig. 3.
Fig. 3.

System sensitivity of (a) ADR and (b) FBDR. After assuming α=0.97, we show the value of sensitivity versus transmission reflection coefficient and phase detuning.

Fig. 4.
Fig. 4.

System sensitivity of ADR (red line) and FBDR resonator (blue line), in which the half-round trip phase shift Δϕ is arbitrarily chosen to be 0.07·π. To demonstrate the effect of α on the system sensitivity, we choose three different values of α.

Fig. 5.
Fig. 5.

Limitation of F on the system sensitivity. In (a),Δϕ=0.007π, α and t are ranging from 0 to 1, respectively. (b) Maximum value of S1/F of an ADR as a function of the detuning of half-round trip shift. (c) Maximum value of S1/F of an FBDR at equal terms of the ADR. (d) Ratio of the values in (c) and (b).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

U1=b0a0=tα2te2iϕ1α2t2e2iϕ,
V1=b3a0=κ2αeiϕ1α2t2e2iϕ,
T1=|b0a0|2=|U1|2,
T2=|b4a0|2=|U1U2|2(1|V1V2|)2+4|V1V2|sin2(βL),
Q=nπLλ(1α2t2),
S=(Iout/Iin)Γ=TΓ=S1·S2=Tϕ·ϕΓ.
S1=T1ϕ=4α2t2sin(2ϕ)[1+α4t4t2t2α4][1+α4t42α2t2cos(2ϕ)]2,
S1=T2ϕ1=T2U1U1ϕ1+T2V1V1ϕ1,
U1ϕ1=2iα2te2iϕ(1t2)(1α2t2e2iϕ)2V1ϕ1=iκ2α(eiϕ+α2t2e3iϕ)(1α2t2e2iϕ)2T2U1=2U1U2(1|V1V2|)2+4|V1V2|sin2(βL)T2V1=2|U1U2|2(V1V22V2+2V2sin2(βL))((1|V1V2|)2+4|V1V2|sin2(βL))2.
S1/F=4α2t2sin(2ϕ)[1+α4t4t2t2α4][1+α4t42α2t2cos(2ϕ)]2·1tαπ.
S1/F4π1|4cos(2ϕ)1/α2t2|43π.

Metrics