Abstract

Mid-frequency waviness and subsurface crack are two fundamental factors that damage KH2PO4 (KDP) crystal processed by ultraprecise fly cutting. In this paper, the motif theory and the Fourier model method are used to analyze the influence of the two factors on the laser-induced damage threshold (LIDT) of KDP. Research results indicate that the modulation degrees increase nearly linearly when the waviness amplitude and subsurface crack depth increase, and, meanwhile, the LIDT tends to decrease. The two factors have different effects during different stages of KDP failure. The mean amplitudes of waviness and subsurface damage depth have similar changing regulations with different feeds. From the machining perspective, we need not necessarily know which is more dangerous, because when one factor is controlled, the other one will also be restrained at the same time. In general, smaller feed and cutting depth are benefits for improving the LIDT of KDP.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
    [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef]
  3. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
    [CrossRef]
  4. P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).
  5. X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
    [CrossRef]
  6. K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).
  7. A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
    [CrossRef]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
    [CrossRef]
  9. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
    [CrossRef]
  10. P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [CrossRef]
  11. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
    [CrossRef]
  12. P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
    [CrossRef]
  13. C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).
  14. M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
    [CrossRef]
  15. M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
    [CrossRef]
  16. L. F. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
    [CrossRef]
  17. K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
    [CrossRef]
  18. X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
    [CrossRef]
  19. H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
    [CrossRef]
  20. M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
    [CrossRef]
  21. ISO 12805:1996 Geometrical product specification (GPS)—surface texture: profile method-motif parameters [S].
  22. C. G. Li, “Calculating methods of MOTIF parameters,” Aviation Precision Manufacturing Technol. 37, 42–46 (2001) (in Chinese).
    [CrossRef]
  23. L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
    [CrossRef]
  24. S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.
  25. S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006).
    [CrossRef]
  26. M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
    [CrossRef]
  27. F. Y. Ge’nin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
    [CrossRef]
  28. J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).
  29. W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001).
    [CrossRef]
  30. W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008).
    [CrossRef]
  31. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
    [CrossRef]
  32. J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
    [CrossRef]
  33. C. F. Kranenberg and K. C. Jungling, “Subsurface damage identification in optically transparent materials using a nondestructive method,” Appl. Opt. 33, 4248–4253 (1994).
    [CrossRef]
  34. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
    [CrossRef]

2012 (1)

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

2011 (2)

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

2010 (2)

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

2009 (1)

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

2008 (1)

W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008).
[CrossRef]

2007 (1)

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
[CrossRef]

2006 (4)

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

2005 (4)

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

2004 (4)

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

2002 (3)

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
[CrossRef]

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

2001 (3)

W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001).
[CrossRef]

F. Y. Ge’nin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
[CrossRef]

C. G. Li, “Calculating methods of MOTIF parameters,” Aviation Precision Manufacturing Technol. 37, 42–46 (2001) (in Chinese).
[CrossRef]

1999 (2)

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

1998 (2)

L. F. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
[CrossRef]

1994 (1)

1973 (1)

An, C. H.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

Bloembergen, N.

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Burnham, A. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
[CrossRef]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Chabassier, G.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

Chase, L. L.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

F. Y. Ge’nin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001).
[CrossRef]

Chen, D. J.

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

Chen, M. J.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

Chen, Y. R.

S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.

Cheng, J.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

Cheung, B. F.

W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001).
[CrossRef]

Choi, B. W.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Chomont, C.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
[CrossRef]

DeMange, P.

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

Demos, S. G.

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Dietzsch, M.

M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
[CrossRef]

Dong, S.

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

Duchesne, J.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

Dumont, P.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

Fan, Z. X.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Fang, C. S.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Fine, K. R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Fluss, M. J.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Fu, K. X.

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Gao, S. Q.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Gao, Z. S.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Garbe, R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Ge’nin, F. Y.

Gip, T.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Gu, Q. T.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Hamza, A. V.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Hartmann, T.

M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
[CrossRef]

He, H. B.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Hutcheon, I. D.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Jiang, W.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

Johnson, M. A.

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

Jungling, K. C.

Kranenberg, C. F.

Lahaye, P.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Lee, W. B.

W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001).
[CrossRef]

Li, C. G.

C. G. Li, “Calculating methods of MOTIF parameters,” Aviation Precision Manufacturing Technol. 37, 42–46 (2001) (in Chinese).
[CrossRef]

Li, L. F.

L. F. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

Li, M. Q.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

Li, Y. N.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Li, Y. P.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Liu, S. H.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Liu, X. C.

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

Liu, X. J.

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
[CrossRef]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Moses, E. I.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
[CrossRef]

Negres, R. A.

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

Nguyen, Q.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Nostrand, M. C.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Papenfub, K.

M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
[CrossRef]

Pellin, M. J.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Pistor, T. V.

Qiao, N. S.

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
[CrossRef]

Radousky, H. B.

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Runkel, M.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Salleo, A.

Savina, M.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Shao, J. D.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Shen, J.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Sickhaus, W. J.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Staggs, M.

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Sun, X.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

Suratwala, T. L.

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

Tang, X. G.

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

Wang, J.

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

Wang, J. H.

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

Wang, K. P.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

Wang, S. H.

S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006).
[CrossRef]

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.

Wang, S. L.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Wang, X. Z.

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

Wang, Z. H.

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
[CrossRef]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
[CrossRef]

Xiao, Y.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

Xie, T. B.

S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006).
[CrossRef]

S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.

Xu, F. H.

S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.

Xu, Q.

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

Xu, X. G.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Yang, L. G.

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

Yi, K.

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Yuan, D. R.

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
[CrossRef]

Zhang, D. Y.

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Zhang, F. H.

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

Zhang, J.

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Zhang, J. X.

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

Zhang, L. J.

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

Zhang, Q. Z.

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Zhang, W.

W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008).
[CrossRef]

Zhang, Y. Z.

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Zhao, H. J.

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
[CrossRef]

Zhou, L.

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

Zhu, J. Q.

W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008).
[CrossRef]

Acta Opt. Sin. (1)

X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett (1)

C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006).
[CrossRef]

Aviation Precision Manufacturing Technol. (1)

C. G. Li, “Calculating methods of MOTIF parameters,” Aviation Precision Manufacturing Technol. 37, 42–46 (2001) (in Chinese).
[CrossRef]

Chin. Phys. B (1)

M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998).
[CrossRef]

Int. J. Mech. Sci. (1)

W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001).
[CrossRef]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

J. Appl. Phys. (2)

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010).
[CrossRef]

J. China Three Gorges Univ. (Natural Sciences) (1)

L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese).
[CrossRef]

J. Mod. Opt. (1)

L. F. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Synth. Cryst. (1)

K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).

Laser J. (1)

H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007).
[CrossRef]

Nanotechnol. Precis. Eng. (1)

C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).

Nucl. Fusion (1)

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004).
[CrossRef]

Opt. Eng. (1)

P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).

Optik (2)

W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008).
[CrossRef]

J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005).
[CrossRef]

Opto-Electron. Eng. (1)

J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).

Phys. Rev. Lett. (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef]

Piezoelectr. Acoustoopt. (1)

X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese).
[CrossRef]

Proc. SPIE (6)

A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002).
[CrossRef]

P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[CrossRef]

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999).
[CrossRef]

S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005).
[CrossRef]

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005).
[CrossRef]

Sci. China A (1)

K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999).
[CrossRef]

Other (2)

S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.

ISO 12805:1996 Geometrical product specification (GPS)—surface texture: profile method-motif parameters [S].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Typical KDP surface processed by ultraprecision fly cutting: (a) detected by white light interferometer (WLI) and (b) detected by atomic force microscope (AFM).

Fig. 2.
Fig. 2.

Physical model of microwaviness.

Fig. 3.
Fig. 3.

Changing curves of modulation degree with the waviness amplitude.

Fig. 4.
Fig. 4.

Light intensity inside KDP modulated by microwaviness with different amplitudes: (a)  T = 3 μm , a = 100 nm and (b)  T = 3 μm , a = 200 nm .

Fig. 5.
Fig. 5.

Sketch map of a single motif.

Fig. 6.
Fig. 6.

Flow chart for calculating motif parameters.

Fig. 7.
Fig. 7.

Calculating results of motif parameters: (a) roughness motifs and (b) waviness motifs on the top envelope of roughness motifs.

Fig. 8.
Fig. 8.

Ideal calculating model of subsurface crack.

Fig. 9.
Fig. 9.

Modulation degrees inside KDP crystal with changing depths of cracks and incident wavelengths.

Fig. 10.
Fig. 10.

Distributions of light intensity with different crack depth and incident wavelengths: (a)  depth = 1 μm , λ = 1.064 μm , (b)  depth = 3 μm , λ = 1.064 μm , and (c)  depth = 3 μm , λ = 0.532 μm .

Fig. 11.
Fig. 11.

Current picture of KDP sample by ultraprecise fly cutting.

Fig. 12.
Fig. 12.

Roughness curve with different feeds under the same cutting depth: (a) cutting depth is 15 μm and (b) cutting depth is 20 μm.

Fig. 13.
Fig. 13.

Mean depth of waviness motifs with different feeds: (a) cutting depth is 15 μm and (b) cutting depth is 20 μm.

Fig. 14.
Fig. 14.

Larger crack extending to the fly-cutting surface.

Fig. 15.
Fig. 15.

Depth measurement of subsurface damage layer on one KDP fly-cutting surface area: (a) detected along X direction and (b) detected along Y direction.

Fig. 16.
Fig. 16.

Depths of subsurface damage layers with changing feeds under different cutting depths: (a) cutting depth is 15 μm and (b) cutting depth is 20 μm.

Fig. 17.
Fig. 17.

Damaged KDP sample during LIDT experiment: (a) front surface damage, (b) back surface damage, (c) periodic body damage, and (d) focused beam.

Fig. 18.
Fig. 18.

Experimental LIDT of KDP crystal with changing feeds under different cutting depths: (a) cutting depth is 15 μm and (b) cutting depth is 20 μm.

Tables (2)

Tables Icon

Table 1. Processing Parameters of KDP Crystal Processed by Ultraprecision Fly Cutting

Tables Icon

Table 2. Parameters of LIDT Experiment of KDP Crystal

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E y p = exp ( i k 0 α x ) W e y p { exp [ i k 0 Γ + p ( z z p ) ] u p + exp [ i k 0 Γ p ( z z p ) ] d p } , σ H x p = exp ( i k 0 α x ) ( W h x p ) { exp [ i k 0 Γ + p ( z z p ) ] u p exp [ i k 0 Γ p ( z z p ) ] d p } ,
I = 1 2 | Re ( E × H * ) | .
M I = I max / I pref ,
W = 1 2 m i = 1 2 m H W i ,

Metrics