Abstract

In this study, nanocrystalline Sn-doped In2O3 (ITO) films were deposited by electron beam evaporation technique and were annealed in air atmosphere from 300°C to 500°C for 30 min. Then, the annealed ITO films in air at 450°C were reannealed in vacuum for 1 h at different temperatures from 300°C to 500°C. The effects of reannealing temperature on structural, electrical, and optical properties of the ITO films were investigated. Increasing reannealing temperature from 300°C to 500°C reduced sheet resistance of ITO thin films from 38 to 12(Ω/sq). The highest transparency over the visible wavelength region of spectrum (95%) was obtained for reannealed films at 450°C. The optimum reannealing temperature for these films is 450°C. Refractive index at 550 nm and porosity for ITO films reannealed at 450°C were 1.92% and 21.2%, respectively. The allowed direct bandgap at different reannealing temperature was evaluated to be in the range of 4.1–4.28 eV. X-ray diffraction results showed that the reannealed films were polycrystalline and a rise in grain size was observed in them. The average grain size in the films reannealed in vacuum at 450°C is about 48.6 nm. Atomic force microscope images indicated that the grain size and root-mean-square roughness films depend on the reannealing temperature. It has been found that reannealing temperature is a key factor in controlling the structural, electrical, and optical properties of ITO films. The power conversion efficiency of the device with ITO films reannealed at 450°C is 1.22% and it is about 58% higher than that of the device without it. This indicates that this film is a promising transparent electrode for organic photovoltaic cells.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
    [CrossRef]
  2. H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
    [CrossRef]
  3. B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
    [CrossRef]
  4. B. K. Min and S. D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuators B Chem. 98, 239–246 (2004).
    [CrossRef]
  5. E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
    [CrossRef]
  6. S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
    [CrossRef]
  7. M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
    [CrossRef]
  8. H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
    [CrossRef]
  9. M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
    [CrossRef]
  10. Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).
  11. M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377, 455–459 (2000).
    [CrossRef]
  12. P. Manivannan and A. Subrahmanyam, “Studies on the electrical and optical properties of reactive electron beam evaporated indium tin oxide films,” J. Phys. D 26, 1510–1515 (1993).
    [CrossRef]
  13. R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
    [CrossRef]
  14. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
    [CrossRef]
  15. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
    [CrossRef]
  16. H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).
  17. S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
    [CrossRef]
  18. S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol. B 14, 757–761 (1996).
  19. R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
    [CrossRef]
  20. E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
    [CrossRef]
  21. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47, 4086–4089 (1976).
    [CrossRef]
  22. D. Kim, “Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes,” Trans. Electr. Electron. Mater. 10, 165–168 (2009).
    [CrossRef]
  23. J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol. 132, 45–48 (2000).
    [CrossRef]
  24. Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
    [CrossRef]
  25. D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
    [CrossRef]
  26. T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
    [CrossRef]
  27. W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
    [CrossRef]
  28. A. Luque and S. Hegedus, Photovoltaic Science and Engineering (Wiley Online Library, 2003).

2012

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

2010

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
[CrossRef]

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

2009

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

D. Kim, “Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes,” Trans. Electr. Electron. Mater. 10, 165–168 (2009).
[CrossRef]

2007

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

2006

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
[CrossRef]

2005

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

2004

B. K. Min and S. D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuators B Chem. 98, 239–246 (2004).
[CrossRef]

Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
[CrossRef]

2003

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

2002

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

2001

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

2000

M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377, 455–459 (2000).
[CrossRef]

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
[CrossRef]

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol. 132, 45–48 (2000).
[CrossRef]

1997

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

1996

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol. B 14, 757–761 (1996).

1993

P. Manivannan and A. Subrahmanyam, “Studies on the electrical and optical properties of reactive electron beam evaporated indium tin oxide films,” J. Phys. D 26, 1510–1515 (1993).
[CrossRef]

1976

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47, 4086–4089 (1976).
[CrossRef]

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

1954

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[CrossRef]

Abd El-Raheem, M. M.

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

Akhavan, O.

R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
[CrossRef]

Alam, M. J.

M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377, 455–459 (2000).
[CrossRef]

Ali, H. M.

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

Azimirad, R.

R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
[CrossRef]

Beling, C. D.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Ben Khalifa, M.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Bender, M.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Besland, M. P.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Bhandari, D.

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

Blanchin, M. G.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[CrossRef]

Cameron, D. C.

M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377, 455–459 (2000).
[CrossRef]

Chiang, W. T.

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

Cho, S. W.

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

Choi, A. S. C.

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

Choi, M. J.

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

Choi, S. D.

B. K. Min and S. D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuators B Chem. 98, 239–246 (2004).
[CrossRef]

Cimalla, V.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Djurisic, A. B.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Douloufakis, E.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Fallah, H. R.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
[CrossRef]

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

Fillard, J. P.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Fujii, A.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Fung, S.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Gagaoudakis, E.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Gasiot, J.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

George, J.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol. 132, 45–48 (2000).
[CrossRef]

Ghasemi, M.

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

Ghasemi, R.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

Ghasemi Varnamkhasti, M.

H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
[CrossRef]

Girtan, M.

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

Golubev, A. N.

S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
[CrossRef]

Gurlui, S.

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47, 4086–4089 (1976).
[CrossRef]

Hahn, S. H.

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

Han, H. W.

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

Hassanzadeh, A.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

Hegedus, S.

A. Luque and S. Hegedus, Photovoltaic Science and Engineering (Wiley Online Library, 2003).

Hori, T.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Jain, V. K.

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

Jung, D.

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

Kang, Y. H.

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

Katsarakis, N.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Kim, D.

D. Kim, “Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes,” Trans. Electr. Electron. Mater. 10, 165–168 (2009).
[CrossRef]

Kim, D. J.

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

Kim, E. J.

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

Kim, I. G.

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

Kim, Y. S.

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

Kiriakidis, G.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Kittichungchit, V.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Knickerbocker, S. A.

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol. B 14, 757–761 (1996).

Kubo, H.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Kulak, A. I.

S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
[CrossRef]

Kulkarni, A. K.

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol. B 14, 757–761 (1996).

Kumar, P.

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

Kwong, C.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Latz, R.

Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
[CrossRef]

Lee, B. H.

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

Lee, S.-H.

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

Li, S.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Lin, Y. F.

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

Ling, C. C.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Luque, A.

A. Luque and S. Hegedus, Photovoltaic Science and Engineering (Wiley Online Library, 2003).

Manifacier, J. C.

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

Manivannan, P.

P. Manivannan and A. Subrahmanyam, “Studies on the electrical and optical properties of reactive electron beam evaporated indium tin oxide films,” J. Phys. D 26, 1510–1515 (1993).
[CrossRef]

Megahed, N. M.

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

Menon, C. S.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol. 132, 45–48 (2000).
[CrossRef]

Mergel, D.

Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
[CrossRef]

Min, B. K.

B. K. Min and S. D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuators B Chem. 98, 239–246 (2004).
[CrossRef]

Mohamed, H. A.

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

Moritou, H.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Moshfegh, A. Z.

R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
[CrossRef]

Mostajaboddavati, M.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

Nam, E.

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

Natasakou, E.

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Oh, S. H.

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

Ozaki, M.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Poznyak, S. K.

S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
[CrossRef]

Qiao, Z.

Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
[CrossRef]

Roger, J. A.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Rusu, G. G.

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

Rusu, G. I.

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

Sakai, J.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Sandu, C.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Shibata, T.

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Steki, H.

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

Su, S. H.

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

Subrahmanyam, A.

P. Manivannan and A. Subrahmanyam, “Studies on the electrical and optical properties of reactive electron beam evaporated indium tin oxide films,” J. Phys. D 26, 1510–1515 (1993).
[CrossRef]

Tardy, J.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Teodorescu, V.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Vahid, M. G.

H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
[CrossRef]

Varnamkhasti, M. G.

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

Vaufrey, D.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Vijay, Y. K.

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

Wang, R. X.

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

Yokoyama, M.

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

Yuna, Y. H.

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

Appl. Surf. Sci.

M. Girtan, G. I. Rusu, G. G. Rusu, and S. Gurlui, “Influence of oxidation conditions on the properties of indium oxide thin films,” Appl. Surf. Sci. 162, 492–498 (2000).
[CrossRef]

J. Appl. Phys.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47, 4086–4089 (1976).
[CrossRef]

J. Ceram. Process Res.

Y. H. Yuna, H. W. Han, M. J. Choi, and A. S. C. Choi, “Effects of sequential annealing processes on surface morphology and resistivity of indium-tin oxide (ITO) thin films fabricated by chemical solution deposition,” J. Ceram. Process Res. 6, 259–262 (2005).

J. Electrochem. Soc.

R. Azimirad, O. Akhavan, and A. Z. Moshfegh, “Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO3 thin films,” J. Electrochem. Soc. 153, E11–E16 (2006).
[CrossRef]

J. Phys. Chem. Solids Suppl.

H. M. Ali, M. M. Abd El-Raheem, N. M. Megahed, and H. A. Mohamed, “Optimization of the optical and electrical properties of electron beam evaporated aluminum-doped zinc oxide films for opto-electronic applications,” J. Phys. Chem. Solids Suppl. 67, 1823–1829 (2006).

J. Phys. D

P. Manivannan and A. Subrahmanyam, “Studies on the electrical and optical properties of reactive electron beam evaporated indium tin oxide films,” J. Phys. D 26, 1510–1515 (1993).
[CrossRef]

R. X. Wang, C. D. Beling, S. Fung, A. B. Djurisic, C. C. Ling, C. Kwong, and S. Li, “Influence of annealing temperature and environment on the properties of indium tin oxide thin films,” J. Phys. D 38, 2000–2005 (2005).
[CrossRef]

J. Phys. E

J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976).
[CrossRef]

J. Vac. Sci. Technol. B

S. A. Knickerbocker and A. K. Kulkarni, “Estimation and verification of the optical properties of indium tin oxide based on the energy band diagram,” J. Vac. Sci. Technol. B 14, 757–761 (1996).

Jpn. J. Appl. Phys.

W. T. Chiang, S. H. Su, Y. F. Lin, and M. Yokoyama, “Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer,” Jpn. J. Appl. Phys. 49, 04DK14 (2010).
[CrossRef]

Mater. Lett.

S. H. Oh, D. J. Kim, S. H. Hahn, and E. J. Kim, “Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol gel dip-coating,” Mater. Lett. 57, 4151–4155 (2003).
[CrossRef]

Mater. Res. Bull.

H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, “The effect of annealing on structural, electrical, and optical properties of nanostructured ITO films prepared by e-beam evaporation,” Mater. Res. Bull. 42, 487–496 (2007).
[CrossRef]

Phys. Rev.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632–633 (1954).
[CrossRef]

Renewable Energy

H. R. Fallah, M. Ghasemi Varnamkhasti, and M. G. Vahid, “Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation,” Renewable Energy 35, 1527–1530 (2010).
[CrossRef]

Sens. Actuators B Chem.

B. K. Min and S. D. Choi, “SnO2 thin film gas sensor fabricated by ion beam deposition,” Sens. Actuators B Chem. 98, 239–246 (2004).
[CrossRef]

E. Gagaoudakis, M. Bender, E. Douloufakis, N. Katsarakis, E. Natasakou, V. Cimalla, and G. Kiriakidis, “The influence of deposition parameters on room temperature ozone sensing properties of InOx film,” Sens. Actuators B Chem. 80, 155–161 (2001).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. G. Varnamkhasti, H. R. Fallah, M. Mostajaboddavati, R. Ghasemi, and A. Hassanzadeh, “Comparison of metal oxides as anode buffer layer for small molecule organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 98, 379–384 (2012).
[CrossRef]

Surf. Coat. Technol.

J. George and C. S. Menon, “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol. 132, 45–48 (2000).
[CrossRef]

Surf. Sci.

S. K. Poznyak, A. N. Golubev, and A. I. Kulak, “Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders,” Surf. Sci. 454, 396–401 (2000).
[CrossRef]

Synth. Met.

D. Vaufrey, M. Ben Khalifa, M. P. Besland, C. Sandu, M. G. Blanchin, V. Teodorescu, J. A. Roger, and J. Tardy, “Reactive ion etching of sol-gel processed SnO2 transparent conducting oxide as a new material for organic light emitting diodes,” Synth. Met. 127, 207–211 (2002).
[CrossRef]

Thin Solid Films

T. Hori, T. Shibata, V. Kittichungchit, H. Moritou, J. Sakai, H. Kubo, A. Fujii, and M. Ozaki, “MoO3 buffer layer effect on photovoltaic properties of interpenetrating heterojunction type organic solar cells,” Thin Solid Films 518, 522–525 (2009).
[CrossRef]

Z. Qiao, R. Latz, and D. Mergel, “Thickness dependence of In2O3:Sn film growth,” Thin Solid Films 466, 250–258 (2004).
[CrossRef]

V. K. Jain, P. Kumar, D. Bhandari, and Y. K. Vijay, “Growth and characterization of transparent conducting nanostructured zinc indium oxide thin films,” Thin Solid Films 519, 1082–1086 (2010).
[CrossRef]

E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010).
[CrossRef]

B. H. Lee, I. G. Kim, S. W. Cho, and S.-H. Lee, “Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application,” Thin Solid Films 302, 25–30 (1997).
[CrossRef]

M. J. Alam and D. C. Cameron, “Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process,” Thin Solid Films 377, 455–459 (2000).
[CrossRef]

Trans. Electr. Electron. Mater.

D. Kim, “Properties of ITO/Cu/ITO multilayer films for application as low resistance transparent electrodes,” Trans. Electr. Electron. Mater. 10, 165–168 (2009).
[CrossRef]

Other

A. Luque and S. Hegedus, Photovoltaic Science and Engineering (Wiley Online Library, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Dependence of sheet resistance of ITO films annealed in air and then reannealed in vacuum for 1 h as a function of annealing temperature.

Fig. 2.
Fig. 2.

Optical transmission spectra of ITO films annealed in air at 450°C and then reannealed at the various annealing temperatures in vacuum.

Fig. 3.
Fig. 3.

Dependence of plots of (αhυ)2 versus hυ of reannealed ITO films at different temperatures.

Fig. 4.
Fig. 4.

Figure of merit (FTC) values of the ITO films as a function of reannealing temperature.

Fig. 5.
Fig. 5.

XRD patterns of ITO films: (a) as-deposited, (b) annealed in air at 400°C, (c) annealed in air at 450°C, (d) reannealed in vacuum at 400°C, and (e) reannealed in vacuum at 450°C.

Fig. 6.
Fig. 6.

Two-dimensional AFM images of the ITO films: (a) as-deposited, (b) annealed in air at 450°C, and (c) reannealed in vacuum at 450°C.

Fig. 7.
Fig. 7.

Current density–voltage characteristics of the organic photovoltaic cells fabricated on ITO film annealed in air and reannealed ITO film in vacuum at 450°C.

Tables (2)

Tables Icon

Table 1. Refractive Index, Porosity, and Band Gap Energy of the Annealed ITO Films at 450°C in Air and then Reannealed in Vacuum with Different Temperatures

Tables Icon

Table 2. Photovoltaic Parameters for the Devices with Different Anodes, ITO Film Annealed in Air at 450°C and ITO Films Annealed at 450°C in Air and then Reannealed in Vacuum under Illumination of 100mW/cm2 with an AM 1.5 G Sun Simulator

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

EgEg0=h2m*(3π2ne)2/3,
n(λ)=S+S2n02(λ)ns2(λ),
S=12(n02(λ)+ns2(λ))+2n0ns(Tmax(λ)Tmin(λ)Tmax(λ)×Tmin(λ)),
Porosity=(1n21nd21)×100(%),
(αhυ)2=A(hυEg),
FTC=Tav10Rs,
D=0.9λBCosθB,
η=Jsc·Voc·FFPin,
FF=JmaxVmaxJscVoc,

Metrics