Abstract

This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system’s sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  2. E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
    [CrossRef]
  3. G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962).
    [CrossRef]
  4. F. J. Weinberg, “Location of the schlieren image in a flame,” Fuel 34, S84–S88 (1955).
  5. D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
    [CrossRef]
  6. W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
    [CrossRef]
  7. A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).
  8. Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
    [CrossRef]
  9. V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).
  10. J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).
  11. M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
    [CrossRef]
  12. L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).
  13. M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).
  14. B. R. Petersen and J. Ghandhi, “Transient high-pressure hydrogen jet measurements,” SAE technical paper 2006-01-0652 (2006).
  15. B. R. Petersen, “Transient high-pressure hydrogen jet measurements,” Ph.D. thesis (University of Wisconsin-Madison, 2006).
  16. M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).
  17. F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).
  18. T. Baritaud, “High speed schlieren visualization of flame initiation in a lean operating S.I. engine,” SAE technical paper 872152 (1987).
  19. M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).
  20. T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).
  21. T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).
  22. K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
    [CrossRef]
  23. C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
    [CrossRef]
  24. C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
    [CrossRef]
  25. V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).
  26. R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).
  27. R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

2012 (2)

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
[CrossRef]

2011 (3)

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

2010 (3)

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).

2009 (1)

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

2003 (1)

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

1991 (1)

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

1962 (1)

G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962).
[CrossRef]

1955 (1)

F. J. Weinberg, “Location of the schlieren image in a flame,” Fuel 34, S84–S88 (1955).

Agarwal, A. K.

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

Alden, M.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Al-Garni, M.

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

Arndt, C.

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

Baritaud, T.

T. Baritaud, “High speed schlieren visualization of flame initiation in a lean operating S.I. engine,” SAE technical paper 872152 (1987).

Bloss, W. H.

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

Boxx, I.

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

Bracco, F.

A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).

Cárdenas, M.

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

Chen, Z.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Clemens, N.

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

De Risi, A.

A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).

Dixon-Lewis, G.

G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962).
[CrossRef]

Fu, J.

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Fujikawa, T.

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).

T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).

Gajdeczko, B.

A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).

Gamba, M.

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

García, J. M.

J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).

Ghandhi, J.

B. R. Petersen and J. Ghandhi, “Transient high-pressure hydrogen jet measurements,” SAE technical paper 2006-01-0652 (2006).

Goto, S.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Grünefeld, G.

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

Gutmark, E.

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

Hansen, S.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Hansonparr, D. M.

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

Heywood, J.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Hottenbach, P.

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

Huang, Z. H.

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Hultqvist, A.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Iskrac, K.

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Isles, G. L.

G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962).
[CrossRef]

Johansson, B.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Kaiser, S. A.

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Kajitani, S.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Klinner, J.

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

Kneer, R.

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

Köhler, J.

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

Konno, M.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Kook, S.

L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).

Kozuka, K.

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).

T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).

Lackner, M.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Li, Q. Q.

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Lyford-Pike, E.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Matsui, H.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Matthias, N.

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Meier, F.

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

Meier, W.

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

Mitchell, D.

C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
[CrossRef]

Moessner, S.

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

Namazian, M.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Neger, T.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Olofsson, H.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Ozasa, T.

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).

T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).

Parr, T. P.

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

Pastor, J. M.

J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).

Pastor, J. V.

J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).

Petersen, B. R.

B. R. Petersen and J. Ghandhi, “Transient high-pressure hydrogen jet measurements,” SAE technical paper 2006-01-0652 (2006).

B. R. Petersen, “Transient high-pressure hydrogen jet measurements,” Ph.D. thesis (University of Wisconsin-Madison, 2006).

Pickett, L. M.

L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).

Rife, J.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Saito, A.

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

Salazar, V. M.

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Sanchez-Barsse, J.

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

Scarcelli, R.

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Schadow, K. C.

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).

Seyfried, H.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Soria, J.

C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
[CrossRef]

Srivastava, D. K.

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

Stasicki, B.

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

Stolz, W.

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

Tan, C. L.

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Vresser, A.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Wallner, T.

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Weinberg, F. J.

F. J. Weinberg, “Location of the schlieren image in a flame,” Fuel 34, S84–S88 (1955).

Weinrotter, M.

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Willert, C.

C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
[CrossRef]

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

Williams, T. C.

L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).

Winter, F.

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Wintner, E.

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

Wu, X. S.

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Yoneda, K.

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

Zapata, L. D.

J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).

Energy Fuels (1)

Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012).
[CrossRef]

Exp. Fluids (2)

E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991).
[CrossRef]

C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012).
[CrossRef]

Fuel (1)

F. J. Weinberg, “Location of the schlieren image in a flame,” Fuel 34, S84–S88 (1955).

Int. J. Hydrogen Energy (1)

D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009).
[CrossRef]

J. Eng. Gas Turbines Power (2)

W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011).
[CrossRef]

K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003).
[CrossRef]

J. Sci. Instrum. (1)

G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962).
[CrossRef]

Meas. Sci. Technol. (1)

C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010).
[CrossRef]

SAE Int. J. Engines (4)

V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).

M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010).
[CrossRef]

Other (14)

L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).

M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).

B. R. Petersen and J. Ghandhi, “Transient high-pressure hydrogen jet measurements,” SAE technical paper 2006-01-0652 (2006).

B. R. Petersen, “Transient high-pressure hydrogen jet measurements,” Ph.D. thesis (University of Wisconsin-Madison, 2006).

M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).

F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).

T. Baritaud, “High speed schlieren visualization of flame initiation in a lean operating S.I. engine,” SAE technical paper 872152 (1987).

M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).

T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).

T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).

J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).

A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).

R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

General arrangement for schlieren imaging. Enlarged regions within circles illustrate deflection by the rays at the boundary between two refractive indices and the resultant blocking of the deflected rays by the aperture. Note that for clarity this schematic drawing shows only a single beam being refracted, while in reality all beams passing through the jet would experience refraction.

Fig. 2.
Fig. 2.

Collimated beam passing through a thick glass cylinder.

Fig. 3.
Fig. 3.

Plan view of the glass cylinder, correction lenses, and the optically relevant components of engine.

Fig. 4.
Fig. 4.

Aberrations along the y axis of the optical system shown in Fig. 3 after optimization as measured 1150 mm away from the center of the cylinder. (a) Transverse ray aberration and (b) optical path difference.

Fig. 5.
Fig. 5.

Side view of the Z-type schlieren system applied to the optical engine. Lateral dimensions of the optical system are not drawn to scale; i.e., the tilt of the optics is exaggerated here.

Fig. 6.
Fig. 6.

Beam profile on detectors placed at the focus (schlieren stop location), 30 mm beyond it, and in front of it. (a) Schematic showing locations of detector, (b) calculation for white light, (c) calculation for monochromatic light at 525 nm, and (d) experimentally observed intensity distribution with an LED centered at 525 nm. Intensity units are different between (b), (c), and (d), but are scaled proportionately.

Fig. 7.
Fig. 7.

Snapshots of a fluorocarbon jet outside of the cylinder with different diameters for source and schlieren apertures as labeled above each image. The gray scale in (d) spans twice as many camera count values as the other three cases; i.e., the original image was twice as bright as it appears. E.V., exhaust valve; I.V., intake valve.

Fig. 8.
Fig. 8.

(a)–(c) Selected images from a sequence capturing a single hydrogen injection event in the running engine, (d) schlieren image of the cylinder after running the engine. Labels (i) and (ii) are referred to in the text. The lower image edge at 121°CA is due to the piston limiting the FOV at this CA.

Fig. 9.
Fig. 9.

Image postprocessing and comparison to an image from a flat geometry. (a) Single, raw frame from the schlieren sequence in Fig. 8; (b) immediately preceding frame, taken 55.5 μs before (a); (c) the result of subtracting (b) from (a); (d) background-corrected schlieren image of a similar hydrogen jet in a vessel with flat windows from the thesis of Petersen [15, p. 52]. The spatial scale of (d) is only approximately that of (a), (b), and (c), and the gray scale is completely different due to different image processing.

Metrics